Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 241

1.

Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.

Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, Mattson MP, Becker KG, Duan W.

J Neurochem. 2012 Nov;123(4):477-90. doi: 10.1111/j.1471-4159.2012.07925.x. Epub 2012 Sep 28.

2.

Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease.

Chan EY, Luthi-Carter R, Strand A, Solano SM, Hanson SA, DeJohn MM, Kooperberg C, Chase KO, DiFiglia M, Young AB, Leavitt BR, Cha JH, Aronin N, Hayden MR, Olson JM.

Hum Mol Genet. 2002 Aug 15;11(17):1939-51.

PMID:
12165556
3.

Altered microRNA regulation in Huntington's disease models.

Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK.

Exp Neurol. 2011 Jan;227(1):172-9. doi: 10.1016/j.expneurol.2010.10.012. Epub 2010 Oct 28.

PMID:
21035445
4.

miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement.

Hoss AG, Labadorf A, Latourelle JC, Kartha VK, Hadzi TC, Gusella JF, MacDonald ME, Chen JF, Akbarian S, Weng Z, Vonsattel JP, Myers RH.

BMC Med Genomics. 2015 Mar 1;8:10. doi: 10.1186/s12920-015-0083-3.

5.

Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington's disease.

Reddy PH, Charles V, Williams M, Miller G, Whetsell WO Jr, Tagle DA.

Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):1035-45.

6.

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, Luthi-Carter R.

Hum Mol Genet. 2007 Aug 1;16(15):1845-61. Epub 2007 May 21.

PMID:
17519223
7.

Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease.

Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W.

J Neurochem. 2013 May;125(3):410-9. doi: 10.1111/jnc.12190. Epub 2013 Mar 5.

8.

Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.

Hermel E, Gafni J, Propp SS, Leavitt BR, Wellington CL, Young JE, Hackam AS, Logvinova AV, Peel AL, Chen SF, Hook V, Singaraja R, Krajewski S, Goldsmith PC, Ellerby HM, Hayden MR, Bredesen DE, Ellerby LM.

Cell Death Differ. 2004 Apr;11(4):424-38.

9.

Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain.

Luthi-Carter R, Hanson SA, Strand AD, Bergstrom DA, Chun W, Peters NL, Woods AM, Chan EY, Kooperberg C, Krainc D, Young AB, Tapscott SJ, Olson JM.

Hum Mol Genet. 2002 Aug 15;11(17):1911-26.

PMID:
12165554
10.

MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms.

Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R.

PLoS One. 2013;8(1):e54222. doi: 10.1371/journal.pone.0054222. Epub 2013 Jan 17.

11.

Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.

Yu ZX, Li SH, Evans J, Pillarisetti A, Li H, Li XJ.

J Neurosci. 2003 Mar 15;23(6):2193-202.

12.

Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects.

Luthi-Carter R, Strand AD, Hanson SA, Kooperberg C, Schilling G, La Spada AR, Merry DE, Young AB, Ross CA, Borchelt DR, Olson JM.

Hum Mol Genet. 2002 Aug 15;11(17):1927-37.

PMID:
12165555
13.

BH3-only proteins Bid and Bim(EL) are differentially involved in neuronal dysfunction in mouse models of Huntington's disease.

García-Martínez JM, Pérez-Navarro E, Xifró X, Canals JM, Díaz-Hernández M, Trioulier Y, Brouillet E, Lucas JJ, Alberch J.

J Neurosci Res. 2007 Sep;85(12):2756-69.

PMID:
17387706
14.

Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice.

Gray M, Shirasaki DI, Cepeda C, André VM, Wilburn B, Lu XH, Tao J, Yamazaki I, Li SH, Sun YE, Li XJ, Levine MS, Yang XW.

J Neurosci. 2008 Jun 11;28(24):6182-95. doi: 10.1523/JNEUROSCI.0857-08.2008.

15.

Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.

Ginés S, Bosch M, Marco S, Gavaldà N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J.

Eur J Neurosci. 2006 Feb;23(3):649-58.

PMID:
16487146
16.

miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models.

Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW, Chen CM, Yang SH.

Am J Hum Genet. 2013 Aug 8;93(2):306-12. doi: 10.1016/j.ajhg.2013.05.025. Epub 2013 Jun 27.

17.

Decreased expression of striatal signaling genes in a mouse model of Huntington's disease.

Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA, Borchelt DR, Tapscott SJ, Young AB, Cha JH, Olson JM.

Hum Mol Genet. 2000 May 22;9(9):1259-71.

PMID:
10814708
18.

Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.

Lee CY, Cantle JP, Yang XW.

FEBS J. 2013 Sep;280(18):4382-94. doi: 10.1111/febs.12418. Epub 2013 Jul 31. Review.

19.

MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis.

Hoss AG, Kartha VK, Dong X, Latourelle JC, Dumitriu A, Hadzi TC, Macdonald ME, Gusella JF, Akbarian S, Chen JF, Weng Z, Myers RH.

PLoS Genet. 2014 Feb 27;10(2):e1004188. doi: 10.1371/journal.pgen.1004188. eCollection 2014 Feb.

20.

Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis.

Fu J, Tang W, Du P, Wang G, Chen W, Li J, Zhu Y, Gao J, Cui L.

BMC Syst Biol. 2012 Jun 15;6:68. doi: 10.1186/1752-0509-6-68.

Supplemental Content

Support Center