Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

CD5-dependent CK2 activation pathway regulates threshold for T cell anergy.

Sestero CM, McGuire DJ, De Sarno P, Brantley EC, Soldevila G, Axtell RC, Raman C.

J Immunol. 2012 Sep 15;189(6):2918-30. doi: 10.4049/jimmunol.1200065. Epub 2012 Aug 17.

3.

CD5 enhances Th17-cell differentiation by regulating IFN-γ response and RORγt localization.

McGuire DJ, Rowse AL, Li H, Peng BJ, Sestero CM, Cashman KS, De Sarno P, Raman C.

Eur J Immunol. 2014 Apr;44(4):1137-42. doi: 10.1002/eji.201343998. Epub 2014 Jan 16.

5.
6.

IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis.

Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A, Xu H.

J Immunol. 2010 Nov 15;185(10):5953-61. doi: 10.4049/jimmunol.1001628. Epub 2010 Oct 13.

7.

Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis.

Oyamada A, Ikebe H, Itsumi M, Saiwai H, Okada S, Shimoda K, Iwakura Y, Nakayama KI, Iwamoto Y, Yoshikai Y, Yamada H.

J Immunol. 2009 Dec 1;183(11):7539-46. doi: 10.4049/jimmunol.0902740. Epub 2009 Nov 16.

8.

Functional and pathogenic differences of Th1 and Th17 cells in experimental autoimmune encephalomyelitis.

Domingues HS, Mues M, Lassmann H, Wekerle H, Krishnamoorthy G.

PLoS One. 2010 Nov 29;5(11):e15531. doi: 10.1371/journal.pone.0015531.

10.
11.

Altered thymic selection and increased autoimmunity caused by ectopic expression of DRAK2 during T cell development.

Gatzka M, Newton RH, Walsh CM.

J Immunol. 2009 Jul 1;183(1):285-97. doi: 10.4049/jimmunol.0803530.

12.
13.

RAGE ligation affects T cell activation and controls T cell differentiation.

Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, Shen JM, Webster JC, Andrews RC, Mjalli AM, Rothlein R, Schmidt AM, Clynes R, Herold KC.

J Immunol. 2008 Sep 15;181(6):4272-8.

14.

Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes.

Jäger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK.

J Immunol. 2009 Dec 1;183(11):7169-77. doi: 10.4049/jimmunol.0901906. Epub 2009 Nov 4.

15.

Cellular FLIP (long isoform) overexpression in T cells drives Th2 effector responses and promotes immunoregulation in experimental autoimmune encephalomyelitis.

Tseveleki V, Bauer J, Taoufik E, Ruan C, Leondiadis L, Haralambous S, Lassmann H, Probert L.

J Immunol. 2004 Dec 1;173(11):6619-26.

16.

Notch signaling regulates T cell accumulation and function in the central nervous system during experimental autoimmune encephalomyelitis.

Sandy AR, Stoolman J, Malott K, Pongtornpipat P, Segal BM, Maillard I.

J Immunol. 2013 Aug 15;191(4):1606-13. doi: 10.4049/jimmunol.1301116. Epub 2013 Jul 3.

17.

Induction of experimental autoimmune encephalomyelitis in the absence of c-Jun N-terminal kinase 2.

Nicolson K, Freland S, Weir C, Delahunt B, Flavell RA, Bäckström BT.

Int Immunol. 2002 Aug;14(8):849-56.

18.

Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis.

Zhang GX, Yu S, Gran B, Li J, Siglienti I, Chen X, Calida D, Ventura E, Kamoun M, Rostami A.

J Immunol. 2003 Nov 1;171(9):4485-92.

19.

Using EAE to better understand principles of immune function and autoimmune pathology.

Rangachari M, Kuchroo VK.

J Autoimmun. 2013 Sep;45:31-9. doi: 10.1016/j.jaut.2013.06.008. Epub 2013 Jul 9. Review.

20.

p(⁷⁰S⁶K¹) in the TORC1 pathway is essential for the differentiation of Th17 Cells, but not Th1, Th2, or Treg cells in mice.

Sasaki CY, Chen G, Munk R, Eitan E, Martindale J, Longo DL, Ghosh P.

Eur J Immunol. 2016 Jan;46(1):212-22. doi: 10.1002/eji.201445422. Epub 2015 Nov 19.

PMID:
26514620
Items per page

Supplemental Content

Write to the Help Desk