Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts.

Correia C, Grayson W, Eton R, Gimble JM, Sousa RA, Reis RL, Vunjak-Novakovic G.

J Tissue Eng Regen Med. 2014 Aug;8(8):629-39. doi: 10.1002/term.1564. Epub 2012 Aug 17.

2.

Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells.

Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G.

Acta Biomater. 2012 Jul;8(7):2483-92. doi: 10.1016/j.actbio.2012.03.019. Epub 2012 Mar 13.

3.

Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.

Xia L, Lin K, Jiang X, Fang B, Xu Y, Liu J, Zeng D, Zhang M, Zhang X, Chang J, Zhang Z.

Biomaterials. 2014 Oct;35(30):8514-27. doi: 10.1016/j.biomaterials.2014.06.028. Epub 2014 Jul 4.

PMID:
25002263
4.

Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue.

Müller AM, Mehrkens A, Schäfer DJ, Jaquiery C, Güven S, Lehmicke M, Martinetti R, Farhadi I, Jakob M, Scherberich A, Martin I.

Eur Cell Mater. 2010 Mar 3;19:127-35.

5.

Osteogenic medium is superior to growth factors in differentiation of human adipose stem cells towards bone-forming cells in 3D culture.

Tirkkonen L, Haimi S, Huttunen S, Wolff J, Pirhonen E, Sándor GK, Miettinen S.

Eur Cell Mater. 2013 Jan 30;25:144-58.

6.

Osteogenic differentiation of human adipose tissue-derived stromal cells (hASCs) in a porous three-dimensional scaffold.

Lee JH, Rhie JW, Oh DY, Ahn ST.

Biochem Biophys Res Commun. 2008 Jun 6;370(3):456-60. doi: 10.1016/j.bbrc.2008.03.123. Epub 2008 Apr 3.

PMID:
18395007
7.

Tumor necrosis factor improves vascularization in osteogenic grafts engineered with human adipose-derived stem/stromal cells.

Hutton DL, Kondragunta R, Moore EM, Hung BP, Jia X, Grayson WL.

PLoS One. 2014 Sep 23;9(9):e107199. doi: 10.1371/journal.pone.0107199. eCollection 2014.

8.

In vitro model of vascularized bone: synergizing vascular development and osteogenesis.

Correia C, Grayson WL, Park M, Hutton D, Zhou B, Guo XE, Niklason L, Sousa RA, Reis RL, Vunjak-Novakovic G.

PLoS One. 2011;6(12):e28352. doi: 10.1371/journal.pone.0028352. Epub 2011 Dec 2.

9.

[Osteogenic capability of primary human adipose-derived stromal cells in vivo].

Liu YS, Zhou YS, Ge WS, Ma GE, Zhang X, Xu YW.

Beijing Da Xue Xue Bao. 2012 Feb 18;44(1):55-8. Chinese.

10.

In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: novel strategies to increase the successful engraftment of tissue-engineered bone grafts.

Gardin C, Bressan E, Ferroni L, Nalesso E, Vindigni V, Stellini E, Pinton P, Sivolella S, Zavan B.

Stem Cells Dev. 2012 Mar 20;21(5):767-77. doi: 10.1089/scd.2011.0147. Epub 2011 Jun 10.

PMID:
21521013
11.

Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures.

He J, Genetos DC, Yellowley CE, Leach JK.

J Cell Biochem. 2010 May;110(1):87-96. doi: 10.1002/jcb.22514.

PMID:
20213746
12.

Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages.

Mihaila SM, Frias AM, Pirraco RP, Rada T, Reis RL, Gomes ME, Marques AP.

Tissue Eng Part A. 2013 Jan;19(1-2):235-46. doi: 10.1089/ten.TEA.2012.0092. Epub 2012 Oct 4.

13.

[Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells].

Zhang X, Liu YS, Lv LW, Chen T, Wu G, Zhou YS.

Beijing Da Xue Xue Bao. 2016 Feb 18;48(1):37-44. Chinese.

14.

Characterization of adipose-derived mesenchymal stem cell combinations for vascularized bone engineering.

Valenzuela CD, Allori AC, Reformat DD, Sailon AM, Allen RJ Jr, Davidson EH, Alikhani M, Bromage TG, Ricci JL, Warren SM.

Tissue Eng Part A. 2013 Jun;19(11-12):1373-85. doi: 10.1089/ten.TEA.2012.0323. Epub 2013 Mar 18.

PMID:
23343199
15.
16.
17.

Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells.

van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G.

Stem Cells. 2012 Nov;30(11):2460-71. doi: 10.1002/stem.1210.

18.

Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

Park HJ, Yu SJ, Yang K, Jin Y, Cho AN, Kim J, Lee B, Yang HS, Im SG, Cho SW.

Biomaterials. 2014 Dec;35(37):9811-23. doi: 10.1016/j.biomaterials.2014.09.002. Epub 2014 Sep 17.

PMID:
25241158
19.

Promotion of Osteogenesis and Angiogenesis in Vascularized Tissue-Engineered Bone Using Osteogenic Matrix Cell Sheets.

Nakano K, Murata K, Omokawa S, Akahane M, Shimizu T, Kawamura K, Kawate K, Tanaka Y.

Plast Reconstr Surg. 2016 May;137(5):1476-84. doi: 10.1097/PRS.0000000000002079.

PMID:
27119922
20.

Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.

Shen FH, Zeng Q, Lv Q, Choi L, Balian G, Li X, Laurencin CT.

Spine J. 2006 Nov-Dec;6(6):615-23. Epub 2006 Oct 10.

PMID:
17088192

Supplemental Content

Support Center