Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Probing the peripheral site of human butyrylcholinesterase.

Macdonald IR, Martin E, Rosenberry TL, Darvesh S.

Biochemistry. 2012 Sep 11;51(36):7046-53. Epub 2012 Aug 27.

2.

Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.

Saxena A, Fedorko JM, Vinayaka CR, Medhekar R, Radić Z, Taylor P, Lockridge O, Doctor BP.

Eur J Biochem. 2003 Nov;270(22):4447-58.

3.
4.

Interaction between the peripheral site residues of human butyrylcholinesterase, D70 and Y332, in binding and hydrolysis of substrates.

Masson P, Xie W, Froment MT, Levitsky V, Fortier PL, Albaret C, Lockridge O.

Biochim Biophys Acta. 1999 Aug 17;1433(1-2):281-93.

PMID:
10446378
5.

Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.

Darvesh S, Darvesh KV, McDonald RS, Mataija D, Walsh R, Mothana S, Lockridge O, Martin E.

J Med Chem. 2008 Jul 24;51(14):4200-12. doi: 10.1021/jm8002075. Epub 2008 Jun 21.

PMID:
18570368
6.

Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: analysis of volume changes upon reaction and hysteretic behavior.

Masson P, Froment MT, Fort S, Ribes F, Bec N, Balny C, Schopfer LM.

Biochim Biophys Acta. 2002 Jun 3;1597(2):229-43.

PMID:
12044901
7.

Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.

Saxena A, Redman AM, Jiang X, Lockridge O, Doctor BP.

Biochemistry. 1997 Dec 2;36(48):14642-51.

PMID:
9398183
8.
9.

Asp7O in the peripheral anionic site of human butyrylcholinesterase.

Masson P, Froment MT, Bartels CF, Lockridge O.

Eur J Biochem. 1996 Jan 15;235(1-2):36-48.

10.

Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides.

Masson P, Froment MT, Gillon E, Nachon F, Darvesh S, Schopfer LM.

Biochim Biophys Acta. 2007 Sep;1774(9):1139-47. Epub 2007 Jun 30.

PMID:
17690023
11.

Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors.

Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Saxena A.

J Med Chem. 2005 Mar 24;48(6):1919-29.

PMID:
15771436
13.

Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior.

Masson P, Bec N, Froment MT, Nachon F, Balny C, Lockridge O, Schopfer LM.

Eur J Biochem. 2004 May;271(10):1980-90.

14.

Discovery of novel 2,6-disubstituted pyridazinone derivatives as acetylcholinesterase inhibitors.

Xing W, Fu Y, Shi Z, Lu D, Zhang H, Hu Y.

Eur J Med Chem. 2013 May;63:95-103. doi: 10.1016/j.ejmech.2013.01.056. Epub 2013 Feb 8.

PMID:
23466605
15.

Concentration-dependent reversible activation-inhibition of human butyrylcholinesterase by tetraethylammonium ion.

Stojan J, Golicnik M, Froment MT, Estour F, Masson P.

Eur J Biochem. 2002 Feb;269(4):1154-61.

16.

Differences in active-site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.

Saxena A, Redman AM, Jiang X, Lockridge O, Doctor BP.

Chem Biol Interact. 1999 May 14;119-120:61-9.

PMID:
10421439
17.

Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors.

Radić Z, Pickering NA, Vellom DC, Camp S, Taylor P.

Biochemistry. 1993 Nov 16;32(45):12074-84.

PMID:
8218285
18.
19.

Effects of mutations of active site residues and amino acids interacting with the Omega loop on substrate activation of butyrylcholinesterase.

Masson P, Xie W, Froment MT, Lockridge O.

Biochim Biophys Acta. 2001 Jan 12;1544(1-2):166-76.

PMID:
11341926
20.

Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.

Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.

Biochem J. 2003 Jul 1;373(Pt 1):33-40.

Supplemental Content

Support Center