Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport.

Aldridge C, Storm A, Cline K, Dabney-Smith C.

J Biol Chem. 2012 Oct 5;287(41):34752-63. doi: 10.1074/jbc.M112.385666. Epub 2012 Aug 15.

2.

Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport.

Dabney-Smith C, Mori H, Cline K.

J Biol Chem. 2006 Mar 3;281(9):5476-83. Epub 2005 Dec 30.

3.

Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system.

Dabney-Smith C, Cline K.

Mol Biol Cell. 2009 Apr;20(7):2060-9. doi: 10.1091/mbc.E08-12-1189. Epub 2009 Feb 4.

4.

Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly.

Aldridge C, Ma X, Gerard F, Cline K.

J Cell Biol. 2014 Apr 14;205(1):51-65. doi: 10.1083/jcb.201311057. Epub 2014 Apr 7.

5.

Direct interaction between a precursor mature domain and transport component Tha4 during twin arginine transport of chloroplasts.

Pal D, Fite K, Dabney-Smith C.

Plant Physiol. 2013 Feb;161(2):990-1001. doi: 10.1104/pp.112.207522. Epub 2012 Dec 3.

6.

Stoichiometry for binding and transport by the twin arginine translocation system.

Celedon JM, Cline K.

J Cell Biol. 2012 May 14;197(4):523-34. doi: 10.1083/jcb.201201096. Epub 2012 May 7.

7.

Component specificity for the thylakoidal Sec and Delta pH-dependent protein transport pathways.

Mori H, Summer EJ, Ma X, Cline K.

J Cell Biol. 1999 Jul 12;146(1):45-56.

8.
9.
10.

Requirement of a Tha4-conserved transmembrane glutamate in thylakoid Tat translocase assembly revealed by biochemical complementation.

Dabney-Smith C, Mori H, Cline K.

J Biol Chem. 2003 Oct 31;278(44):43027-33. Epub 2003 Aug 25.

11.

Functional assembly of thylakoid deltapH-dependent/Tat protein transport pathway components in vitro.

Fincher V, Dabney-Smith C, Cline K.

Eur J Biochem. 2003 Dec;270(24):4930-41.

12.

Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase.

Ma X, Cline K.

Plant Cell. 2013 Mar;25(3):999-1015. doi: 10.1105/tpc.112.107409. Epub 2013 Mar 19.

13.
14.
15.

Chloroplast TatC plays a direct role in thylakoid (Delta)pH-dependent protein transport.

Mori H, Summer EJ, Cline K.

FEBS Lett. 2001 Jul 13;501(1):65-8.

16.

Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported.

Ma X, Cline K.

EMBO J. 2010 May 5;29(9):1477-88. doi: 10.1038/emboj.2010.44. Epub 2010 Mar 25.

17.

Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy.

Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C.

Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):413-8. doi: 10.1016/j.bbamem.2013.10.007. Epub 2013 Oct 19.

18.

The thylakoid delta pH-dependent pathway machinery facilitates RR-independent N-tail protein integration.

Summer EJ, Mori H, Settles AM, Cline K.

J Biol Chem. 2000 Aug 4;275(31):23483-90.

19.

The chloroplast Tat pathway utilizes the transmembrane electric potential as an energy source.

Braun NA, Davis AW, Theg SM.

Biophys J. 2007 Sep 15;93(6):1993-8. Epub 2007 May 18.

20.

C-terminal truncation of a Tat passenger protein affects its membrane translocation by interfering with receptor binding.

Schlesier R, Bernd Klösgen R.

Biol Chem. 2015 Apr;396(4):349-57. doi: 10.1515/hsz-2014-0249.

PMID:
25562604

Supplemental Content

Support Center