Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

The 'impact' of force filtering cut-off frequency on the peak knee abduction moment during landing: artefact or 'artifiction'?

Roewer BD, Ford KR, Myer GD, Hewett TE.

Br J Sports Med. 2014 Mar;48(6):464-8. doi: 10.1136/bjsports-2012-091398. Epub 2012 Aug 14.

2.

High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury?

Myer GD, Ford KR, Di Stasi SL, Foss KD, Micheli LJ, Hewett TE.

Br J Sports Med. 2015 Jan;49(2):118-22. doi: 10.1136/bjsports-2013-092536. Epub 2014 Mar 31.

3.

Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention.

Kristianslund E, Krosshaug T, van den Bogert AJ.

J Biomech. 2012 Feb 23;45(4):666-71. doi: 10.1016/j.jbiomech.2011.12.011. Epub 2012 Jan 9.

PMID:
22227316
4.

Can two-dimensional measured peak sagittal plane excursions during drop vertical jumps help identify three-dimensional measured joint moments?

Dingenen B, Malfait B, Vanrenterghem J, Robinson MA, Verschueren SM, Staes FF.

Knee. 2015 Mar;22(2):73-9. doi: 10.1016/j.knee.2014.12.006. Epub 2014 Dec 20.

PMID:
25575747
5.

Longitudinal Increases in Knee Abduction Moments in Females during Adolescent Growth.

Hewett TE, Myer GD, Kiefer AW, Ford KR.

Med Sci Sports Exerc. 2015 Dec;47(12):2579-85. doi: 10.1249/MSS.0000000000000700.

6.

Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises.

Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T.

Br J Sports Med. 2014 May;48(9):779-83. doi: 10.1136/bjsports-2012-091370. Epub 2012 Dec 20.

PMID:
23258848
7.

Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury.

Myer GD, Ford KR, Khoury J, Succop P, Hewett TE.

Br J Sports Med. 2011 Apr;45(4):245-52. doi: 10.1136/bjsm.2009.069351. Epub 2010 Jun 17.

8.

Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.

Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC.

Am J Sports Med. 2015 Nov;43(11):2727-37. doi: 10.1177/0363546515602016. Epub 2015 Sep 10.

PMID:
26359376
9.
10.

Knee biomechanics during a jump-cut maneuver: effects of sex and ACL surgery.

Miranda DL, Fadale PD, Hulstyn MJ, Shalvoy RM, Machan JT, Fleming BC.

Med Sci Sports Exerc. 2013 May;45(5):942-51. doi: 10.1249/MSS.0b013e31827bf0e4.

11.

Do knee concentric and eccentric strength and sagittal-plane knee joint biomechanics differ between jumpers and non-jumpers in landing?

Wu X, Zhang S, Liu Y, Zhang D, Xie B.

Hum Mov Sci. 2013 Dec;32(6):1299-309. doi: 10.1016/j.humov.2013.03.008. Epub 2013 Sep 21.

PMID:
24060223
12.

Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.

Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P.

Am J Sports Med. 2005 Apr;33(4):492-501. Epub 2005 Feb 8.

PMID:
15722287
13.

The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.

Cruz A, Bell D, McGrath M, Blackburn T, Padua D, Herman D.

Res Sports Med. 2013;21(4):330-42. doi: 10.1080/15438627.2013.825798.

PMID:
24067119
14.

A predictive model to estimate knee-abduction moment: implications for development of a clinically applicable patellofemoral pain screening tool in female athletes.

Myer GD, Ford KR, Foss KD, Rauh MJ, Paterno MV, Hewett TE.

J Athl Train. 2014 May-Jun;49(3):389-98. doi: 10.4085/1062-6050-49.2.17. Epub 2014 Apr 24.

15.

Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury.

Myer GD, Ford KR, Khoury J, Succop P, Hewett TE.

Am J Sports Med. 2010 Oct;38(10):2025-33. doi: 10.1177/0363546510370933. Epub 2010 Jul 1.

16.

Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump.

Bates NA, Ford KR, Myer GD, Hewett TE.

Clin Biomech (Bristol, Avon). 2013 Aug;28(7):796-9. doi: 10.1016/j.clinbiomech.2013.07.004. Epub 2013 Jul 27.

17.

Real-time feedback on knee abduction moment does not improve frontal-plane knee mechanics during jump landings.

Beaulieu ML, Palmieri-Smith RM.

Scand J Med Sci Sports. 2014 Aug;24(4):692-9. doi: 10.1111/sms.12051. Epub 2013 Jan 24.

18.

The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.

Dai B, Garrett WE, Gross MT, Padua DA, Queen RM, Yu B.

Am J Sports Med. 2015 Feb;43(2):466-74. doi: 10.1177/0363546514555322. Epub 2014 Nov 3.

PMID:
25367015
19.

Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.

Bates NA, Ford KR, Myer GD, Hewett TE.

Clin Biomech (Bristol, Avon). 2013 Apr;28(4):459-66. doi: 10.1016/j.clinbiomech.2013.02.013. Epub 2013 Apr 4.

20.

Effects of knee extension constraint training on knee flexion angle and peak impact ground-reaction force.

Liu H, Wu W, Yao W, Spang JT, Creighton RA, Garrett WE, Yu B.

Am J Sports Med. 2014 Apr;42(4):979-86. doi: 10.1177/0363546513519323. Epub 2014 Feb 14.

PMID:
24532596

Supplemental Content

Support Center