Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 244

1.

How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock.

Lucas RJ, Lall GS, Allen AE, Brown TM.

Prog Brain Res. 2012;199:1-18. doi: 10.1016/B978-0-444-59427-3.00001-0. Review.

PMID:
22877656
2.

Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.

Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, Seeliger M, Biel M, Humphries P, Douglas RH, Wenzel A, Foster RG, Hankins MW, Lucas RJ.

Vis Neurosci. 2004 Sep-Oct;21(5):675-83.

PMID:
15683556
3.

Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice.

Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW.

Nature. 2003 Jul 3;424(6944):76-81. Epub 2003 Jun 15.

PMID:
12808468
4.

Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle.

Zhao X, Pack W, Khan NW, Wong KY.

J Neurosci. 2016 Apr 13;36(15):4209-17. doi: 10.1523/JNEUROSCI.2629-14.2016.

PMID:
27076420
5.

Melanopsin--shedding light on the elusive circadian photopigment.

Brown RL, Robinson PR.

Chronobiol Int. 2004 Mar;21(2):189-204. Review.

PMID:
15332341
6.

Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.

Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S.

Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.

PMID:
18432195
7.

Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD.

Nature. 2005 Feb 17;433(7027):749-54.

PMID:
15716953
8.

Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina.

Bobu C, Sandu C, Laurent V, Felder-Schmittbuhl MP, Hicks D.

Mol Vis. 2013 May 21;19:1060-73. Print 2013.

PMID:
23734075
9.

Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance.

Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Güler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ.

Neuron. 2010 May 13;66(3):417-28. doi: 10.1016/j.neuron.2010.04.037.

PMID:
20471354
10.

Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment.

Chen SK, Chew KS, McNeill DS, Keeley PW, Ecker JL, Mao BQ, Pahlberg J, Kim B, Lee SC, Fox MA, Guido W, Wong KY, Sampath AP, Reese BE, Kuruvilla R, Hattar S.

Neuron. 2013 Feb 6;77(3):503-15. doi: 10.1016/j.neuron.2012.11.028.

PMID:
23395376
11.

Melanopsin and inner retinal photoreception.

Bailes HJ, Lucas RJ.

Cell Mol Life Sci. 2010 Jan;67(1):99-111. doi: 10.1007/s00018-009-0155-7. Epub 2009 Oct 29. Review.

PMID:
19865798
12.

Intrinsically photosensitive retinal ganglion cells.

Pickard GE, Sollars PJ.

Rev Physiol Biochem Pharmacol. 2012;162:59-90. doi: 10.1007/112_2011_4. Review.

PMID:
22160822
13.

Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.

Drouyer E, Rieux C, Hut RA, Cooper HM.

J Neurosci. 2007 Sep 5;27(36):9623-31.

PMID:
17804622
14.

Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device.

Cao D, Barrionuevo PA.

Chronobiol Int. 2015 Mar;32(2):270-80. doi: 10.3109/07420528.2014.966269. Epub 2014 Oct 7.

PMID:
25290040
15.

Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities.

Altimus CM, Güler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S.

Nat Neurosci. 2010 Sep;13(9):1107-12. doi: 10.1038/nn.2617. Epub 2010 Aug 15.

PMID:
20711184
16.

Intrinsically photosensitive retinal ganglion cells.

Pickard GE, Sollars PJ.

Sci China Life Sci. 2010 Jan;53(1):58-67. doi: 10.1007/s11427-010-0024-5. Epub 2010 Feb 12. Review.

PMID:
20596956
17.

Melanopsin changes in neonatal albino rat independent of rods and cones.

Hannibal J, Georg B, Fahrenkrug J.

Neuroreport. 2007 Jan 8;18(1):81-5.

PMID:
17259866
18.

Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.

Ekesten B, Gouras P.

Vis Neurosci. 2005 Nov-Dec;22(6):893-903.

PMID:
16469196
19.

Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors.

Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster R.

Science. 1999 Apr 16;284(5413):502-4.

PMID:
10205061
20.

Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin.

Buhr ED, Van Gelder RN.

Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8625-30. doi: 10.1073/pnas.1323350111. Epub 2014 May 19.

PMID:
24843129

Supplemental Content

Support Center