Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis.

Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15473-8. Epub 2012 Aug 7.

2.

H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis.

Costa KC, Lie TJ, Jacobs MA, Leigh JA.

MBio. 2013 Feb 26;4(2). pii: e00062-13. doi: 10.1128/mBio.00062-13.

3.

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.

Costa KC, Wong PM, Wang T, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11050-5. doi: 10.1073/pnas.1003653107. Epub 2010 Jun 1.

4.

Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis.

Richards MA, Lie TJ, Zhang J, Ragsdale SW, Leigh JA, Price ND.

J Bacteriol. 2016 Nov 18;198(24):3379-3390. Print 2016 Dec 15.

5.

VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.

Costa KC, Lie TJ, Xia Q, Leigh JA.

J Bacteriol. 2013 Nov;195(22):5160-5. doi: 10.1128/JB.00895-13. Epub 2013 Sep 13.

6.

Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.

Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM.

ISME J. 2014 Aug;8(8):1673-81. doi: 10.1038/ismej.2014.82. Epub 2014 May 20.

7.

Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis.

Sattler C, Wolf S, Fersch J, Goetz S, Rother M.

Mol Genet Genomics. 2013 Sep;288(9):413-24. doi: 10.1007/s00438-013-0756-6. Epub 2013 Jun 26.

PMID:
23801407
8.

Disruption of the operon encoding Ehb hydrogenase limits anabolic CO2 assimilation in the archaeon Methanococcus maripaludis.

Porat I, Kim W, Hendrickson EL, Xia Q, Zhang Y, Wang T, Taub F, Moore BC, Anderson IJ, Hackett M, Leigh JA, Whitman WB.

J Bacteriol. 2006 Feb;188(4):1373-80.

9.

A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen.

Yoon SH, Turkarslan S, Reiss DJ, Pan M, Burn JA, Costa KC, Lie TJ, Slagel J, Moritz RL, Hackett M, Leigh JA, Baliga NS.

Genome Res. 2013 Nov;23(11):1839-51. doi: 10.1101/gr.153916.112. Epub 2013 Oct 2.

10.

A bacterial electron-bifurcating hydrogenase.

Schuchmann K, Müller V.

J Biol Chem. 2012 Sep 7;287(37):31165-71. doi: 10.1074/jbc.M112.395038. Epub 2012 Jul 18.

11.

Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth.

Meyer B, Kuehl J, Deutschbauer AM, Price MN, Arkin AP, Stahl DA.

J Bacteriol. 2013 Mar;195(5):990-1004. doi: 10.1128/JB.01959-12. Epub 2012 Dec 21.

12.

NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO.

Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK.

J Bacteriol. 2013 Oct;195(19):4373-86. doi: 10.1128/JB.00678-13. Epub 2013 Jul 26.

13.

Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis.

Lupa B, Hendrickson EL, Leigh JA, Whitman WB.

Appl Environ Microbiol. 2008 Nov;74(21):6584-90. doi: 10.1128/AEM.01455-08. Epub 2008 Sep 12.

14.

Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation.

Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW.

Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5632-7. Epub 2002 Apr 2.

15.

Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis.

Costa KC, Yoon SH, Pan M, Burn JA, Baliga NS, Leigh JA.

J Bacteriol. 2013 Apr;195(7):1456-62. doi: 10.1128/JB.02141-12. Epub 2013 Jan 18.

16.
17.

Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea.

Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA.

Proc Natl Acad Sci U S A. 2007 May 22;104(21):8930-4. Epub 2007 May 14.

18.

Metabolic processes of Methanococcus maripaludis and potential applications.

Goyal N, Zhou Z, Karimi IA.

Microb Cell Fact. 2016 Jun 10;15(1):107. doi: 10.1186/s12934-016-0500-0. Review.

19.

Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase.

Bai L, Fujishiro T, Huang G, Koch J, Takabayashi A, Yokono M, Tanaka A, Xu T, Hu X, Ermler U, Shima S.

Faraday Discuss. 2017 Jun 2;198:37-58. doi: 10.1039/c6fd00209a.

PMID:
28294213
20.

Response of a rice paddy soil methanogen to syntrophic growth as revealed by transcriptional analyses.

Liu P, Yang Y, Lü Z, Lu Y.

Appl Environ Microbiol. 2014 Aug;80(15):4668-76.

Supplemental Content

Support Center