Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.

Effects of selective checkpoint kinase 1 inhibition on cytarabine cytotoxicity in acute myelogenous leukemia cells in vitro.

Schenk EL, Koh BD, Flatten KS, Peterson KL, Parry D, Hess AD, Smith BD, Karp JE, Karnitz LM, Kaufmann SH.

Clin Cancer Res. 2012 Oct 1;18(19):5364-73. doi: 10.1158/1078-0432.CCR-12-0961. Epub 2012 Aug 6.

2.

Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias.

Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten KS, Peterson K, Schneider P, Mackey K, Freshwater T, Levis MJ, McDevitt MA, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Isaacs R, Kaufmann SH.

Clin Cancer Res. 2012 Dec 15;18(24):6723-31. doi: 10.1158/1078-0432.CCR-12-2442. Epub 2012 Oct 23.

3.

CHK1 and WEE1 inhibition combine synergistically to enhance therapeutic efficacy in acute myeloid leukemia ex vivo.

Chaudhuri L, Vincelette ND, Koh BD, Naylor RM, Flatten KS, Peterson KL, McNally A, Gojo I, Karp JE, Mesa RA, Sproat LO, Bogenberger JM, Kaufmann SH, Tibes R.

Haematologica. 2014 Apr;99(4):688-96. doi: 10.3324/haematol.2013.093187. Epub 2013 Oct 31.

4.

Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine.

Mesa RA, Loegering D, Powell HL, Flatten K, Arlander SJ, Dai NT, Heldebrant MP, Vroman BT, Smith BD, Karp JE, Eyck CJ, Erlichman C, Kaufmann SH, Karnitz LM.

Blood. 2005 Jul 1;106(1):318-27. Epub 2005 Mar 22.

5.

Targeting the wee1 kinase for treatment of pediatric Down syndrome acute myeloid leukemia.

Caldwell JT, Edwards H, Buck SA, Ge Y, Taub JW.

Pediatr Blood Cancer. 2014 Oct;61(10):1767-73. doi: 10.1002/pbc.25081. Epub 2014 Jun 24.

6.

Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial.

Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M, Gandhi V, Plunkett W.

Blood. 2006 Mar 15;107(6):2517-24. Epub 2005 Nov 17.

7.

CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells.

Qi W, Xie C, Li C, Caldwell JT, Edwards H, Taub JW, Wang Y, Lin H, Ge Y.

J Hematol Oncol. 2014 Aug 1;7:53. doi: 10.1186/s13045-014-0053-9.

8.

Ultrasound activates ataxia telangiectasia mutated- and rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway in human leukemia Jurkat cells.

Furusawa Y, Iizumi T, Fujiwara Y, Hassan MA, Tabuchi Y, Nomura T, Kondo T.

Ultrason Sonochem. 2012 Nov;19(6):1246-51. doi: 10.1016/j.ultsonch.2012.04.003. Epub 2012 Apr 19.

PMID:
22571845
9.

Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening.

Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, Taricani L, Wiswell D, Seghezzi W, Penaflor E, Bhagwat B, Wang W, Gu D, Hsieh Y, Lee S, Liu M, Parry D.

Mol Cancer Ther. 2011 Apr;10(4):591-602. doi: 10.1158/1535-7163.MCT-10-0928. Epub 2011 Feb 14.

10.

ATP depletion triggers acute myeloid leukemia differentiation through an ATR/Chk1 protein-dependent and p53 protein-independent pathway.

Chakrabarti A, Gupta K, Sharma JP, Yang J, Agarwal A, Glick A, Zhang Y, Agarwal M, Agarwal MK, Wald DN.

J Biol Chem. 2012 Jul 6;287(28):23635-43. doi: 10.1074/jbc.M111.312801. Epub 2012 May 23.

11.

A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations.

Zhou L, Zhang Y, Chen S, Kmieciak M, Leng Y, Lin H, Rizzo KA, Dumur CI, Ferreira-Gonzalez A, Dai Y, Grant S.

Leukemia. 2015 Apr;29(4):807-18. doi: 10.1038/leu.2014.296. Epub 2014 Oct 6.

12.

Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo.

Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y.

Cancer Biol Ther. 2015;16(12):1784-93. doi: 10.1080/15384047.2015.1095406.

13.

The novel Chk1 inhibitor MK-8776 sensitizes human leukemia cells to HDAC inhibitors by targeting the intra-S checkpoint and DNA replication and repair.

Dai Y, Chen S, Kmieciak M, Zhou L, Lin H, Pei XY, Grant S.

Mol Cancer Ther. 2013 Jun;12(6):878-89. doi: 10.1158/1535-7163.MCT-12-0902. Epub 2013 Mar 27.

14.

Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functionality.

Van Linden AA, Baturin D, Ford JB, Fosmire SP, Gardner L, Korch C, Reigan P, Porter CC.

Mol Cancer Ther. 2013 Dec;12(12):2675-84. doi: 10.1158/1535-7163.MCT-13-0424. Epub 2013 Oct 11.

15.

RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation.

Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH.

Breast Cancer Res. 2012 Apr 11;14(2):R60.

16.

S-phase checkpoints regulate Apo2 ligand/TRAIL and CPT-11-induced apoptosis of prostate cancer cells.

Ray S, Shyam S, Fraizer GC, Almasan A.

Mol Cancer Ther. 2007 Apr;6(4):1368-78.

17.

ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status.

Huntoon CJ, Flatten KS, Wahner Hendrickson AE, Huehls AM, Sutor SL, Kaufmann SH, Karnitz LM.

Cancer Res. 2013 Jun 15;73(12):3683-91. doi: 10.1158/0008-5472.CAN-13-0110. Epub 2013 Apr 2.

18.

Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells.

Takagaki K, Katsuma S, Kaminishi Y, Horio T, Tanaka T, Ohgi T, Yano J.

Genes Cells. 2005 Feb;10(2):97-106.

19.
20.

Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival.

Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH.

Mol Pharmacol. 2005 Dec;68(6):1636-44. Epub 2005 Aug 26.

Supplemental Content

Support Center