Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Dynamic biomechanical examination of the lumbar spine with implanted total disc replacement using a pendulum testing system.

Daniels AH, Paller DJ, Koruprolu S, McDonnell M, Palumbo MA, Crisco JJ.

Spine (Phila Pa 1976). 2012 Nov 1;37(23):E1438-43. doi: 10.1097/BRS.0b013e31826b39d7.

2.

Cervical total disc replacement exhibits similar stiffness to intact cervical functional spinal units tested on a dynamic pendulum testing system.

Esmende SM, Daniels AH, Paller DJ, Koruprolu S, Palumbo MA, Crisco JJ.

Spine J. 2015 Jan 1;15(1):162-7. doi: 10.1016/j.spinee.2014.08.442. Epub 2014 Sep 4.

PMID:
25194516
3.

Dynamic biomechanical examination of the lumbar spine with implanted total spinal segment replacement (TSSR) utilizing a pendulum testing system.

Daniels AH, Paller DJ, Koruprolu S, Palumbo MA, Crisco JJ.

PLoS One. 2013;8(2):e57412. doi: 10.1371/journal.pone.0057412. Epub 2013 Feb 25.

4.

Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.

Zhu Q, Itshayek E, Jones CF, Schwab T, Larson CR, Lenke LG, Cripton PA.

Eur Spine J. 2012 Jun;21 Suppl 5:S599-611. doi: 10.1007/s00586-012-2301-4. Epub 2012 Apr 25.

5.

The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system.

Crisco JJ, Fujita L, Spenciner DB.

J Biomech. 2007;40(12):2767-73. Epub 2007 Mar 23.

PMID:
17367798
6.

Response of Charité total disc replacement under physiologic loads: prosthesis component motion patterns.

O'Leary P, Nicolakis M, Lorenz MA, Voronov LI, Zindrick MR, Ghanayem A, Havey RM, Carandang G, Sartori M, Gaitanis IN, Fronczak S, Patwardhan AG.

Spine J. 2005 Nov-Dec;5(6):590-9.

PMID:
16291097
7.

An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion.

McNally D, Naylor J, Johnson S.

Eur Spine J. 2012 Jun;21 Suppl 5:S612-7. doi: 10.1007/s00586-012-2249-4. Epub 2012 Mar 13.

8.

Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis.

Demetropoulos CK, Sengupta DK, Knaub MA, Wiater BP, Abjornson C, Truumees E, Herkowitz HN.

Spine (Phila Pa 1976). 2010 Jan 1;35(1):26-31. doi: 10.1097/BRS.0b013e3181c4eb9a.

PMID:
20042953
9.

Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.

Holsgrove TP, Gill HS, Miles AW, Gheduzzi S.

Proc Inst Mech Eng H. 2015 Nov;229(11):769-77. doi: 10.1177/0954411915610601.

PMID:
26503838
10.

Resect or not to resect: the role of posterior longitudinal ligament in lumbar total disc replacement.

Cakir B, Richter M, Schmoelz W, Schmidt R, Reichel H, Wilke HJ.

Eur Spine J. 2012 Jun;21 Suppl 5:S592-8. doi: 10.1007/s00586-009-1193-4. Epub 2009 Oct 31.

11.

The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation.

Wilke HJ, Schmidt R, Richter M, Schmoelz W, Reichel H, Cakir B.

Eur Spine J. 2012 Jun;21 Suppl 5:S577-84. doi: 10.1007/s00586-010-1552-1. Epub 2010 Sep 10.

12.

Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.

Zirbel SA, Stolworthy DK, Howell LL, Bowden AE.

Spine J. 2013 Sep;13(9):1134-47. doi: 10.1016/j.spinee.2013.02.010. Epub 2013 Mar 15.

PMID:
23507531
13.

Controlled motion with the XL-TDR lateral-approach lumbar total disk replacement: in vitro kinematic investigation.

Pimenta L, Turner A, Oliveira L, Marchi L, Cornwall B.

J Neurol Surg A Cent Eur Neurosurg. 2015 Mar;76(2):133-8. doi: 10.1055/s-0034-1394187. Epub 2014 Dec 29. Erratum in: J Neurol Surg A Cent Eur Neurosurg. 2015 Jul;76(4):337-8.

PMID:
25545808
14.

Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine.

Knapik GG, Mendel E, Marras WS.

Eur Spine J. 2012 Jun;21 Suppl 5:S641-52. doi: 10.1007/s00586-011-1743-4. Epub 2011 Mar 29.

15.

Biomechanical evaluation of a metal-on-metal cervical intervertebral disc prosthesis.

Colle KO, Butler JB, Reyes PM, Newcomb AG, Theodore N, Crawford NR.

Spine J. 2013 Nov;13(11):1640-9. doi: 10.1016/j.spinee.2013.06.026. Epub 2013 Oct 2.

PMID:
24094992
16.

Needle puncture in rabbit functional spinal units alters rotational biomechanics.

Hartman RA, Bell KM, Quan B, Nuzhao Y, Sowa GA, Kang JD.

J Spinal Disord Tech. 2015 Apr;28(3):E146-53. doi: 10.1097/BSD.0000000000000196.

17.

In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.

Chen WM, Park C, Lee K, Lee S.

Spine (Phila Pa 1976). 2009 Sep 15;34(20):E716-23. doi: 10.1097/BRS.0b013e3181ae23d1.

PMID:
19752690
18.

Primary and coupled motions after cervical total disc replacement using a compressible six-degree-of-freedom prosthesis.

Patwardhan AG, Tzermiadianos MN, Tsitsopoulos PP, Voronov LI, Renner SM, Reo ML, Carandang G, Ritter-Lang K, Havey RM.

Eur Spine J. 2012 Jun;21 Suppl 5:S618-29. doi: 10.1007/s00586-010-1575-7. Epub 2010 Sep 24.

19.
20.

Circumferential dynamic stabilization of the lumbar spine: a biomechanical analysis.

Käfer W, Cakir B, Midderhoff S, Reichel H, Wilke HJ.

Eur Spine J. 2014 Nov;23(11):2330-9. doi: 10.1007/s00586-014-3286-y. Epub 2014 Apr 11.

PMID:
24722881

Supplemental Content

Support Center