Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells.

Keung AJ, Asuri P, Kumar S, Schaffer DV.

Integr Biol (Camb). 2012 Sep;4(9):1049-58. doi: 10.1039/c2ib20083j. Epub 2012 Aug 2.

2.

Mechanobiology: a new frontier for human pluripotent stem cells.

Sun Y, Fu J.

Integr Biol (Camb). 2013 Mar;5(3):450-7. doi: 10.1039/c2ib20256e. Review.

3.

Mechanobiology of human pluripotent stem cells.

Earls JK, Jin S, Ye K.

Tissue Eng Part B Rev. 2013 Oct;19(5):420-30. doi: 10.1089/ten.TEB.2012.0641. Epub 2013 Apr 26. Review.

4.

Engineering the human pluripotent stem cell microenvironment to direct cell fate.

Hazeltine LB, Selekman JA, Palecek SP.

Biotechnol Adv. 2013 Nov 15;31(7):1002-19. doi: 10.1016/j.biotechadv.2013.03.002. Epub 2013 Mar 17. Review.

5.

Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells.

Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S.

Stem Cells. 2011 Nov;29(11):1886-97. doi: 10.1002/stem.746.

6.

Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells.

Chan LY, Birch WR, Yim EK, Choo AB.

Biomaterials. 2013 Jan;34(2):382-92. doi: 10.1016/j.biomaterials.2012.09.033. Epub 2012 Oct 16.

PMID:
23083932
7.

Controlled Growth and the Maintenance of Human Pluripotent Stem Cells by Cultivation with Defined Medium on Extracellular Matrix-Coated Micropatterned Dishes.

Takenaka C, Miyajima H, Yoda Y, Imazato H, Yamamoto T, Gomi S, Ohshima Y, Kagawa K, Sasaki T, Kawamata S.

PLoS One. 2015 Jun 26;10(6):e0129855. doi: 10.1371/journal.pone.0129855. eCollection 2015.

8.

Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications.

Ireland RG, Simmons CA.

Stem Cells. 2015 Nov;33(11):3187-96. doi: 10.1002/stem.2105. Epub 2015 Jul 29. Review.

9.

On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobiology.

Shao Y, Sang J, Fu J.

Biomaterials. 2015 Jun;52:26-43. doi: 10.1016/j.biomaterials.2015.01.078. Epub 2015 Feb 21. Review.

10.

Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation.

Yan Y, Martin LM, Bosco DB, Bundy JL, Nowakowski RS, Sang QX, Li Y.

Biomaterials. 2015 Dec;73:231-42. doi: 10.1016/j.biomaterials.2015.09.020. Epub 2015 Sep 12.

PMID:
26410789
11.

Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate.

Pryzhkova MV, Aria I, Cheng Q, Harris GM, Zan X, Gharib M, Jabbarzadeh E.

Biomaterials. 2014 Jun;35(19):5098-109. doi: 10.1016/j.biomaterials.2014.03.011. Epub 2014 Mar 29.

12.

In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment.

Wang M, Deng Y, Zhou P, Luo Z, Li Q, Xie B, Zhang X, Chen T, Pei D, Tang Z, Wei S.

ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4560-72. doi: 10.1021/acsami.5b00188. Epub 2015 Feb 18.

PMID:
25671246
13.

Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions.

Meng G, Liu S, Rancourt DE.

Stem Cells Dev. 2012 Jul 20;21(11):2036-48. doi: 10.1089/scd.2011.0489. Epub 2012 Jan 26.

PMID:
22149941
14.

Three-dimensional biomaterials for the study of human pluripotent stem cells.

Kraehenbuehl TP, Langer R, Ferreira LS.

Nat Methods. 2011 Aug 30;8(9):731-6. doi: 10.1038/nmeth.1671.

PMID:
21878920
15.

Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates.

Abraham S, Sheridan SD, Miller B, Rao RR.

Biotechnol Prog. 2010 Jul-Aug;26(4):1126-34. doi: 10.1002/btpr.412.

PMID:
20730767
16.

Development of a simple, repeatable, and cost-effective extracellular matrix for long-term xeno-free and feeder-free self-renewal of human pluripotent stem cells.

Pakzad M, Ashtiani MK, Mousavi-Gargari SL, Baharvand H.

Histochem Cell Biol. 2013 Dec;140(6):635-48. doi: 10.1007/s00418-013-1144-3. Epub 2013 Sep 25.

PMID:
24065274
17.

Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation.

Abraham S, Riggs MJ, Nelson K, Lee V, Rao RR.

Acta Biomater. 2010 Dec;6(12):4622-33. doi: 10.1016/j.actbio.2010.07.029. Epub 2010 Jul 24.

PMID:
20659593
18.

Growth of Human Pluripotent Stem Cells Using Functional Human Extracellular Matrix.

Sanz-Garcia A, Stojkovic M, Escobedo-Lucea C.

Methods Mol Biol. 2016;1307:39-60. doi: 10.1007/7651_2014_154.

PMID:
25476443
19.

A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation.

Vuoristo S, Toivonen S, Weltner J, Mikkola M, Ustinov J, Trokovic R, Palgi J, Lund R, Tuuri T, Otonkoski T.

PLoS One. 2013 Oct 2;8(10):e76205. doi: 10.1371/journal.pone.0076205. eCollection 2013.

20.

A new technique for modeling neuronal connectivity using human pluripotent stem cells.

Lee CT, Bendriem RM, Freed WJ.

Restor Neurol Neurosci. 2015;33(3):347-56. doi: 10.3233/RNN-140488.

Supplemental Content

Support Center