Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions.

Dahal K, Gadapati W, Savitch LV, Singh J, Hüner NP.

Planta. 2012 Nov;236(5):1639-52. doi: 10.1007/s00425-012-1710-2. Epub 2012 Jul 31.

PMID:
22847022
2.

The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.

Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Hüner NP.

Physiol Plant. 2012 Feb;144(2):169-88. doi: 10.1111/j.1399-3054.2011.01513.x. Epub 2011 Nov 29.

PMID:
21883254
3.

Cold acclimation of Arabidopsis thaliana results in incomplete recovery of photosynthetic capacity, associated with an increased reduction of the chloroplast stroma.

Savitch LV, Barker-Astrom J, Ivanov AG, Hurry V, Oquist G, Huner NP, Gardeström P.

Planta. 2001 Dec;214(2):295-303.

PMID:
11800395
4.

Long-term growth under elevated CO2 suppresses biotic stress genes in non-acclimated, but not cold-acclimated winter wheat.

Kane K, Dahal KP, Badawi MA, Houde M, Hüner NP, Sarhan F.

Plant Cell Physiol. 2013 Nov;54(11):1751-68. doi: 10.1093/pcp/pct116. Epub 2013 Aug 21.

PMID:
23969557
5.

Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers.

Gutiérrez D, Gutiérrez E, Pérez P, Morcuende R, Verdejo AL, Martinez-Carrasco R.

Physiol Plant. 2009 Sep;137(1):86-100. doi: 10.1111/j.1399-3054.2009.01256.x. Epub 2009 Jun 1.

PMID:
19570134
6.

Acclimation of Norway spruce photosynthetic apparatus to the combined effect of high irradiance and temperature.

Stroch M, Vrábl D, Podolinská J, Kalina J, Urban O, Spunda V.

J Plant Physiol. 2010 May 15;167(8):597-605. doi: 10.1016/j.jplph.2009.11.011. Epub 2010 Jan 8.

PMID:
20060196
8.

Excitation energy partitioning and quenching during cold acclimation in Scots pine.

Sveshnikov D, Ensminger I, Ivanov AG, Campbell D, Lloyd J, Funk C, Hüner NP, Oquist G.

Tree Physiol. 2006 Mar;26(3):325-36.

PMID:
16356904
10.

Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

Chang CY, Fréchette E, Unda F, Mansfield SD, Ensminger I.

Plant Physiol. 2016 Oct;172(2):802-818. Epub 2016 Sep 2.

11.

The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.

Priault P, Fresneau C, Noctor G, De Paepe R, Cornic G, Streb P.

J Exp Bot. 2006;57(9):2075-85. Epub 2006 May 19.

PMID:
16714313
12.

Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.

Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA.

J Plant Physiol. 2013 Jun 15;170(9):801-13. doi: 10.1016/j.jplph.2013.01.001. Epub 2013 Feb 4.

PMID:
23384758
13.

Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes.

Urban MO, Klíma M, Vítámvás P, Vašek J, Hilgert-Delgado AA, Kučera V.

J Plant Physiol. 2013 Dec 15;170(18):1600-8. doi: 10.1016/j.jplph.2013.07.012. Epub 2013 Sep 18.

PMID:
24054752
14.

Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez Á, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F.

J Plant Physiol. 2015 Feb 1;174:97-109. doi: 10.1016/j.jplph.2014.10.009. Epub 2014 Nov 5.

PMID:
25462972
15.

Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

Šigut L, Holišová P, Klem K, Šprtová M, Calfapietra C, Marek MV, Špunda V, Urban O.

Ann Bot. 2015 Nov;116(6):929-39. doi: 10.1093/aob/mcv043. Epub 2015 Apr 7.

16.

The photoprotective protein PsbS exerts control over CO(2) assimilation rate in fluctuating light in rice.

Hubbart S, Ajigboye OO, Horton P, Murchie EH.

Plant J. 2012 Aug;71(3):402-12. doi: 10.1111/j.1365-313X.2012.04995.x. Epub 2012 Jun 5.

18.

Photosynthetic traits around budbreak in pre-existing needles of Sakhalin spruce (Picea glehnii) seedlings grown under elevated CO2 concentration assessed by chlorophyll fluorescence measurements.

Kitao M, Tobita H, Utsugi H, Komatsu M, Kitaoka S, Maruyama Y, Koike T.

Tree Physiol. 2012 Aug;32(8):998-1007. doi: 10.1093/treephys/tps048. Epub 2012 Jun 15.

PMID:
22705862
19.

Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants.

Zhou J, Wang J, Shi K, Xia XJ, Zhou YH, Yu JQ.

Plant Physiol Biochem. 2012 Nov;60:141-9. doi: 10.1016/j.plaphy.2012.07.010. Epub 2012 Aug 2.

PMID:
22935478
20.

Supplemental Content

Support Center