Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 202

1.

β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.

Vidal M, Wieland T, Lohse MJ, Lorenz K.

Cardiovasc Res. 2012 Nov 1;96(2):255-64. doi: 10.1093/cvr/cvs249. Epub 2012 Jul 27.

PMID:
22843704
2.

Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy.

Ruppert C, Deiss K, Herrmann S, Vidal M, Oezkur M, Gorski A, Weidemann F, Lohse MJ, Lorenz K.

Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7440-5. doi: 10.1073/pnas.1221999110. Epub 2013 Apr 15.

3.

A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy.

Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ.

Nat Med. 2009 Jan;15(1):75-83. doi: 10.1038/nm.1893. Epub 2008 Dec 7.

PMID:
19060905
4.

Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy.

Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y.

J Biol Chem. 1999 Apr 2;274(14):9760-70.

5.

Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

Carrasco L, Cea P, Rocco P, Peña-Oyarzún D, Rivera-Mejias P, Sotomayor-Flores C, Quiroga C, Criollo A, Ibarra C, Chiong M, Lavandero S.

J Cell Biochem. 2014 Apr;115(4):712-20. doi: 10.1002/jcb.24712.

PMID:
24243530
6.

The beta1-adrenergic receptor mediates extracellular signal-regulated kinase activation via Galphas.

Zheng J, Shen H, Xiong Y, Yang X, He J.

Amino Acids. 2010 Jan;38(1):75-84. doi: 10.1007/s00726-008-0207-6. Epub 2008 Nov 27.

PMID:
19037712
7.

Galpha(12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy.

Maruyama Y, Nishida M, Sugimoto Y, Tanabe S, Turner JH, Kozasa T, Wada T, Nagao T, Kurose H.

Circ Res. 2002 Nov 15;91(10):961-9.

8.
9.

Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct.

Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A.

Am J Physiol Renal Physiol. 2003 May;284(5):F948-54.

10.

Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles.

Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE.

Am J Physiol Cell Physiol. 2007 May;292(5):C1681-9. Epub 2006 Dec 6.

12.

RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy.

Nunn C, Zou MX, Sobiesiak AJ, Roy AA, Kirshenbaum LA, Chidiac P.

Cell Signal. 2010 Aug;22(8):1231-9. doi: 10.1016/j.cellsig.2010.03.015. Epub 2010 Apr 1.

PMID:
20362664
13.

Effects of angiotensin type I receptor blockade on the cardiac Raf/MEK/ERK cascade activated via adrenergic receptors.

Zhang GX, Kimura S, Murao K, Yu X, Obata K, Matsuyoshi H, Takaki M.

J Pharmacol Sci. 2010;113(3):224-33. Epub 2010 Jun 16.

15.

The impact of blunted beta-adrenergic responsiveness on growth regulatory pathways in hypertension.

Gros R, Ding Q, Chorazyczewski J, Andrews J, Pickering JG, Hegele RA, Feldman RD.

Mol Pharmacol. 2006 Jan;69(1):317-27. Epub 2005 Oct 13.

17.

Galpha and Gbeta gamma require distinct Src-dependent pathways to activate Rap1 and Ras.

Schmitt JM, Stork PJ.

J Biol Chem. 2002 Nov 8;277(45):43024-32. Epub 2002 Sep 6.

18.

Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium.

Major JL, Salih M, Tuana BS.

J Mol Cell Cardiol. 2015 Jul;84:179-90. doi: 10.1016/j.yjmcc.2015.04.026. Epub 2015 May 2.

PMID:
25944088
19.

beta-Adrenergic-responsive activation of extracellular signal-regulated protein kinases in salivary cells: role of epidermal growth factor receptor and cAMP.

Yeh CK, Ghosh PM, Dang H, Liu Q, Lin AL, Zhang BX, Katz MS.

Am J Physiol Cell Physiol. 2005 Jun;288(6):C1357-66. Epub 2005 Feb 2.

Supplemental Content

Support Center