Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening.

Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE 3rd, Sherman DR, Boshoff HI, Mizrahi V.

Chem Biol. 2012 Jul 27;19(7):844-54. doi: 10.1016/j.chembiol.2012.05.020.

2.

Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.

Liu Y, Zhou S, Deng Q, Li X, Meng J, Guan Y, Li C, Xiao C.

Tuberculosis (Edinb). 2016 Mar;97:38-46. doi: 10.1016/j.tube.2015.12.003. Epub 2016 Jan 6.

PMID:
26980494
3.

A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis.

Kumar A, Casey A, Odingo J, Kesicki EA, Abrahams G, Vieth M, Masquelin T, Mizrahi V, Hipskind PA, Sherman DR, Parish T.

PLoS One. 2013 Nov 7;8(11):e72786. doi: 10.1371/journal.pone.0072786. eCollection 2013.

4.
5.

Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors.

Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P.

ChemMedChem. 2014 Nov;9(11):2538-47. doi: 10.1002/cmdc.201402171. Epub 2014 Aug 22.

PMID:
25155986
6.

A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis.

Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J.

PLoS One. 2012;7(8):e43651. doi: 10.1371/journal.pone.0043651. Epub 2012 Aug 16. Erratum in: PLoS One. 2014;9(11):e113015.

7.

Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary.

Lee YV, Wahab HA, Choong YS.

Biomed Res Int. 2015;2015:895453. doi: 10.1155/2015/895453. Epub 2015 Jan 8. Review.

8.

A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition.

Yang Y, Gao P, Liu Y, Ji X, Gan M, Guan Y, Hao X, Li Z, Xiao C.

Bioorg Med Chem Lett. 2011 Jul 1;21(13):3943-6. doi: 10.1016/j.bmcl.2011.05.021. Epub 2011 May 14.

PMID:
21641210
9.

Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase.

Xu Z, Yin W, Martinelli LK, Evans J, Chen J, Yu Y, Wilson DJ, Mizrahi V, Qiao C, Aldrich CC.

Bioorg Med Chem. 2014 Mar 1;22(5):1726-35. doi: 10.1016/j.bmc.2014.01.017. Epub 2014 Jan 23.

10.

Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis.

Nandakumar M, Nathan C, Rhee KY.

Nat Commun. 2014 Jun 30;5:4306. doi: 10.1038/ncomms5306.

PMID:
24978671
11.

High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU.

Rani C, Mehra R, Sharma R, Chib R, Wazir P, Nargotra A, Khan IA.

Tuberculosis (Edinb). 2015 Dec;95(6):664-77. doi: 10.1016/j.tube.2015.06.003. Epub 2015 Jul 31.

PMID:
26318557
12.

Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors.

Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, Yogeeswari P, Sriram D.

Bioorg Med Chem. 2014 Aug 1;22(15):4223-32. doi: 10.1016/j.bmc.2014.05.038. Epub 2014 May 23.

PMID:
24953948
13.

Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis.

Hung AW, Silvestre HL, Wen S, George GP, Boland J, Blundell TL, Ciulli A, Abell C.

ChemMedChem. 2016 Jan 5;11(1):38-42. doi: 10.1002/cmdc.201500414. Epub 2015 Oct 21.

14.

5-Nitro-2,6-dioxohexahydro-4-pyrimidinecarboxamides: synthesis, in vitro antimycobacterial activity, cytotoxicity, and isocitrate lyase inhibition studies.

Sriram D, Yogeeswari P, Senthilkumar P, Naidu G, Bhat P.

J Enzyme Inhib Med Chem. 2010 Dec;25(6):765-72. doi: 10.3109/14756360903425221. Epub 2010 Jun 23.

PMID:
20569083
15.
16.

Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads.

Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D.

Bioorg Med Chem. 2014 Mar 15;22(6):1938-47. doi: 10.1016/j.bmc.2014.01.030. Epub 2014 Feb 6.

PMID:
24565972
17.

Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis?

Goldman RC.

Tuberculosis (Edinb). 2013 Nov;93(6):569-88. doi: 10.1016/j.tube.2013.09.003. Epub 2013 Sep 18. Review.

PMID:
24119636
18.

Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.

Silvestre HL, Blundell TL, Abell C, Ciulli A.

Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12984-9. doi: 10.1073/pnas.1304045110. Epub 2013 Jul 19.

19.

Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis.

Ntie-Kang F, Kannan S, Wichapong K, Owono Owono LC, Sippl W, Megnassan E.

Mol Biosyst. 2014 Feb;10(2):223-39. doi: 10.1039/c3mb70449a.

PMID:
24240974
20.

Discovery of novel lysine ɛ-aminotransferase inhibitors: An intriguing potential target for latent tuberculosis.

Devi PB, Sridevi JP, Kakan SS, Saxena S, Jeankumar VU, Soni V, Anantaraju HS, Yogeeswari P, Sriram D.

Tuberculosis (Edinb). 2015 Dec;95(6):786-94. doi: 10.1016/j.tube.2015.04.010. Epub 2015 Aug 8.

PMID:
26299907

Supplemental Content

Support Center