Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 232

1.

Investigation of antibacterial properties silver nanoparticles prepared via green method.

Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y.

Chem Cent J. 2012 Jul 27;6(1):73. doi: 10.1186/1752-153X-6-73.

2.

Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method.

Balavandy SK, Shameli K, Biak DR, Abidin ZZ.

Chem Cent J. 2014 Feb 13;8(1):11. doi: 10.1186/1752-153X-8-11.

3.

Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.

Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y.

Int J Nanomedicine. 2010 Oct 22;5:875-87. doi: 10.2147/IJN.S13632.

4.

Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA.

Int J Nanomedicine. 2011;6:331-41. doi: 10.2147/IJN.S16964. Epub 2011 Feb 10.

5.

Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

Paul B, Bhuyan B, Purkayastha DD, Dhar SS.

J Photochem Photobiol B. 2016 Jan;154:1-7. doi: 10.1016/j.jphotobiol.2015.11.004. Epub 2015 Nov 10.

PMID:
26590801
6.

Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior.

Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA.

Int J Nanomedicine. 2011;6:581-90. doi: 10.2147/IJN.S17112. Epub 2011 Mar 25.

7.

Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity.

Sadeghi B, Rostami A, Momeni SS.

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 5;134:326-32. doi: 10.1016/j.saa.2014.05.078. Epub 2014 Jun 19.

PMID:
25022505
8.

Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent.

Ahmad MB, Tay MY, Shameli K, Hussein MZ, Lim JJ.

Int J Mol Sci. 2011;12(8):4872-84. doi: 10.3390/ijms12084872. Epub 2011 Aug 2.

9.

Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.

Díaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, García A.

Int J Nanomedicine. 2012;7:3597-612. doi: 10.2147/IJN.S32648. Epub 2012 Jul 11.

10.

Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.

Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, Bukhari SN.

Int J Nanomedicine. 2015 Mar 16;10:2079-88. doi: 10.2147/IJN.S75874. eCollection 2015.

11.

Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route.

Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY, Chieng BW.

Chem Cent J. 2012 Sep 12;6(1):101. doi: 10.1186/1752-153X-6-101.

12.

Biosynthesis of silver nanoparticles using Artocarpus elasticus stem bark extract.

Abdullah NI, Ahmad MB, Shameli K.

Chem Cent J. 2015 Nov 2;9:61. doi: 10.1186/s13065-015-0133-0. eCollection 2015.

13.

Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam.

Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K.

Spectrochim Acta A Mol Biomol Spectrosc. 2015 Jan 25;135:1137-44. doi: 10.1016/j.saa.2014.08.019. Epub 2014 Aug 19.

PMID:
25189525
14.

Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

Cheng KM, Hung YW, Chen CC, Liu CC, Young JJ.

Carbohydr Polym. 2014 Sep 22;110:195-202. doi: 10.1016/j.carbpol.2014.03.053. Epub 2014 Mar 28.

PMID:
24906746
15.

Antibacterial activity of silver nanoparticles synthesized from serine.

Jayaprakash N, Judith Vijaya J, John Kennedy L, Priadharsini K, Palani P.

Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:316-22. doi: 10.1016/j.msec.2015.01.012. Epub 2015 Jan 7.

PMID:
25686955
16.

One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles.

Hussain MA, Shah A, Jantan I, Tahir MN, Shah MR, Ahmed R, Bukhari SN.

J Nanobiotechnology. 2014 Dec 3;12:53. doi: 10.1186/s12951-014-0053-5.

17.

Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge.

Mandal D, Kumar Dash S, Das B, Chattopadhyay S, Ghosh T, Das D, Roy S.

Biomed Pharmacother. 2016 Oct;83:548-558. doi: 10.1016/j.biopha.2016.07.011. Epub 2016 Jul 21.

PMID:
27449536
18.

Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method.

Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y.

Int J Mol Sci. 2012;13(6):6639-50. doi: 10.3390/ijms13066639. Epub 2012 May 30.

19.

Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.

Mohan S, Oluwafemi OS, George SC, Jayachandran VP, Lewu FB, Songca SP, Kalarikkal N, Thomas S.

Carbohydr Polym. 2014 Jun 15;106:469-74. doi: 10.1016/j.carbpol.2014.01.008. Epub 2014 Jan 13.

PMID:
24721103
20.

Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan.

Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N.

Nanoscale Res Lett. 2015 Dec;10(1):916. doi: 10.1186/s11671-015-0916-1. Epub 2015 Jul 28.

Supplemental Content

Support Center