Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover.

Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ.

Biotechnol Biofuels. 2012 Jul 26;5(1):52. doi: 10.1186/1754-6834-5-52.

2.

Phanerochaete chrysosporium produces a diverse array of extracellular enzymes when grown on sorghum.

Ray A, Saykhedkar S, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ.

Appl Microbiol Biotechnol. 2012 Mar;93(5):2075-89. doi: 10.1007/s00253-012-3907-5.

PMID:
22290653
3.

Quantitative proteomic study of Aspergillus Fumigatus secretome revealed deamidation of secretory enzymes.

Adav SS, Ravindran A, Sze SK.

J Proteomics. 2015 Apr 24;119:154-68. doi: 10.1016/j.jprot.2015.02.007. Epub 2015 Feb 24.

PMID:
25724730
4.

A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xyloglucan.

Jagadeeswaran G, Gainey L, Prade R, Mort AJ.

Appl Microbiol Biotechnol. 2016 May;100(10):4535-47. doi: 10.1007/s00253-016-7505-9. Epub 2016 Apr 13.

PMID:
27075737
5.

Mapping N-linked glycosylation of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown on lignocellulose.

Rubio MV, Zubieta MP, Franco Cairo JP, Calzado F, Paes Leme AF, Squina FM, Prade RA, de Lima Damásio AR.

Biotechnol Biofuels. 2016 Aug 8;9:168. doi: 10.1186/s13068-016-0580-4. eCollection 2016.

6.

Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.

Martins I, Garcia H, Varela A, Núñez O, Planchon S, Galceran MT, Renaut J, Rebelo LP, Silva Pereira C.

J Proteomics. 2014 Feb 26;98:175-88. doi: 10.1016/j.jprot.2013.11.023. Epub 2013 Dec 4.

PMID:
24316358
7.

iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium.

Manavalan A, Adav SS, Sze SK.

J Proteomics. 2011 Dec 21;75(2):642-54. doi: 10.1016/j.jprot.2011.09.001. Epub 2011 Sep 13.

PMID:
21945728
8.
9.

Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition.

Adav SS, Ravindran A, Sze SK.

J Proteome Res. 2013 Jun 7;12(6):2715-31. doi: 10.1021/pr4000762. Epub 2013 May 20.

PMID:
23647126
10.

Proteome analysis of fungal and bacterial involvement in leaf litter decomposition.

Schneider T, Gerrits B, Gassmann R, Schmid E, Gessner MO, Richter A, Battin T, Eberl L, Riedel K.

Proteomics. 2010 May;10(9):1819-30. doi: 10.1002/pmic.200900691.

PMID:
20198641
11.

The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate.

Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U.

Microb Cell Fact. 2010 Apr 20;9:23. doi: 10.1186/1475-2859-9-23.

12.

Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches.

Nekiunaite L, Arntzen MØ, Svensson B, Vaaje-Kolstad G, Abou Hachem M.

Biotechnol Biofuels. 2016 Sep 1;9(1):187. doi: 10.1186/s13068-016-0604-0. eCollection 2016.

13.

Secretome analysis of the fungus Trichoderma harzianum grown on cellulose.

Do Vale LH, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CA, Ximenes F Filho E, Sousa MV.

Proteomics. 2012 Aug;12(17):2716-28. doi: 10.1002/pmic.201200063. Epub 2012 Aug 1.

PMID:
22745025
14.

Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources.

Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q.

Biotechnol Biofuels. 2013 Oct 16;6(1):149. doi: 10.1186/1754-6834-6-149.

15.

Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa.

Sun J, Tian C, Diamond S, Glass NL.

Eukaryot Cell. 2012 Apr;11(4):482-93. doi: 10.1128/EC.05327-11. Epub 2012 Feb 17.

16.

Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae.

Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stålbrand H, de Vries RP.

Fungal Genet Biol. 2009 Mar;46 Suppl 1:S161-S169.

PMID:
19618505
17.

Composition of structural carbohydrates in biomass: precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector.

Godin B, Agneessens R, Gerin PA, Delcarte J.

Talanta. 2011 Sep 30;85(4):2014-26. doi: 10.1016/j.talanta.2011.07.044. Epub 2011 Jul 19.

PMID:
21872053
18.

Definition and characterization of enzymes for maximal biocatalytic solubilization of prebiotic polysaccharides from potato pulp.

Thomassen LV, Larsen DM, Mikkelsen JD, Meyer AS.

Enzyme Microb Technol. 2011 Aug 10;49(3):289-97. doi: 10.1016/j.enzmictec.2011.06.006. Epub 2011 Jun 13.

PMID:
22112514
19.

Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose.

Munir RI, Spicer V, Shamshurin D, Krokhin OV, Wilkins J, Ramachandran U, Sparling R, Levin DB.

J Proteomics. 2015 Jul 1;125:41-53. doi: 10.1016/j.jprot.2015.04.026. Epub 2015 May 7.

PMID:
25957533
20.

Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass.

Dos Santos HB, Bezerra TMS, Pradella JGC, Delabona P, Lima D, Gomes E, Hartson SD, Rogers J, Couger B, Prade R.

AMB Express. 2016 Dec;6(1):103. doi: 10.1186/s13568-016-0276-y. Epub 2016 Nov 2.

Supplemental Content

Support Center