Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 164

1.

Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling.

Amaresh S, Kim GJ, Karthikeyan K, Aravindan V, Chung KY, Cho BW, Lee YS.

Phys Chem Chem Phys. 2012 Sep 14;14(34):11904-9. doi: 10.1039/c2cp41624g. Epub 2012 Jul 26.

PMID:
22832971
2.

A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.

Ng SH, Tran N, Bramnik KG, Hibst H, Novák P.

Chemistry. 2008;14(35):11141-8. doi: 10.1002/chem.200800286.

PMID:
18979463
3.

X-ray absorption spectroscopy and energy storage of Ni-doped cobalt nitride, (Ni(0.33)Co(0.67))N, prepared by a simple synthesis route.

Das B, Reddy MV, Chowdari BV.

Nanoscale. 2013 Mar 7;5(5):1961-6. doi: 10.1039/c2nr33675h. Epub 2013 Jan 29.

PMID:
23360912
4.

Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling.

Cherian CT, Zheng M, Reddy MV, Chowdari BV, Sow CH.

ACS Appl Mater Interfaces. 2013 Jul 10;5(13):6054-60. doi: 10.1021/am400802j. Epub 2013 Jun 18.

PMID:
23738585
5.

Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries.

Jin EM, Jin B, Park KH, Gu HB, Park GC, Kim KW.

J Nanosci Nanotechnol. 2008 Oct;8(10):5057-61.

PMID:
19198390
6.

Improved elevated temperature performance of Al-intercalated V(2)O(5) electrospun nanofibers for lithium-ion batteries.

Cheah YL, Aravindan V, Madhavi S.

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):3270-7. doi: 10.1021/am300616k. Epub 2012 May 29.

PMID:
22616641
7.

Two-step hydrothermal synthesis of submicron Li(1+x)Ni(0.5)Mn(1.5)O(4-δ) for lithium-ion battery cathodes (x = 0.02, δ = 0.12).

Hao X, Austin MH, Bartlett BM.

Dalton Trans. 2012 Jul 14;41(26):8067-76. doi: 10.1039/c2dt30351e. Epub 2012 May 15.

PMID:
22585259
8.

Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes.

Ortiz GF, López MC, Li Y, McDonald MJ, Cabello M, Tirado JL, Yang Y.

Sci Rep. 2016 Feb 16;6:20656. doi: 10.1038/srep20656.

9.

The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage.

Zhang HL, Li F, Liu C, Cheng HM.

Nanotechnology. 2008 Apr 23;19(16):165606. doi: 10.1088/0957-4484/19/16/165606. Epub 2008 Mar 20.

PMID:
21825650
10.

LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.

Chen N, Yao Y, Wang D, Wei Y, Bie X, Wang C, Chen G, Du F.

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10661-6. doi: 10.1021/am502352c. Epub 2014 Jun 18.

PMID:
24905851
11.

Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries.

Gu HB, Jin B, Jun DK, Han Z.

J Nanosci Nanotechnol. 2007 Nov;7(11):4037-40.

PMID:
18047113
12.

Synthesis of high voltage (4.9 V) cycling LiNixCoyMn(1-x-y)O2 cathode materials for lithium rechargeable batteries.

Nithya C, Kumari VS, Gopukumar S.

Phys Chem Chem Phys. 2011 Apr 7;13(13):6125-32. doi: 10.1039/c0cp02258f. Epub 2011 Feb 24.

PMID:
21350759
13.
14.

Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.

Sun C, Rajasekhara S, Dong Y, Goodenough JB.

ACS Appl Mater Interfaces. 2011 Sep;3(9):3772-6. doi: 10.1021/am200987y. Epub 2011 Sep 12.

PMID:
21877744
15.

A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode.

Karthikeyan K, Amaresh S, Kim KJ, Kim SH, Chung KY, Cho BW, Lee YS.

Nanoscale. 2013 Jul 7;5(13):5958-64. doi: 10.1039/c3nr00760j. Epub 2013 May 24.

PMID:
23708774
16.

Metal oxide coated lithium cobalt fluorophosphate cathode materials for lithium secondary batteries--effect of aging and temperature.

Amaresh S, Karthikeyan K, Kim KJ, An JY, Cho SJ, Chung KY, Cho BW, Nam KW, Lee YS.

J Nanosci Nanotechnol. 2014 Oct;14(10):7545-52.

PMID:
25942823
17.

Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries.

Sun YK, Lee DJ, Lee YJ, Chen Z, Myung ST.

ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11434-40. doi: 10.1021/am403684z. Epub 2013 Oct 31.

PMID:
24127791
18.

New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.

Kim JK, Senthilkumar B, Sahgong SH, Kim JH, Chi M, Kim Y.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):7025-32. doi: 10.1021/acsami.5b01260. Epub 2015 Mar 23.

PMID:
25768692
19.

Hydrothermal synthesis and electrochemical properties of KMn8O16 nanorods for lithium-ion battery applications.

Zheng H, Zhang Q, Kim SJ, Jiang X, Dan M, Gao H, Li S, Wang S, Feng C.

J Nanosci Nanotechnol. 2013 Apr;13(4):2814-8.

PMID:
23763165
20.

Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries.

Khomane RB.

J Colloid Interface Sci. 2011 Apr 1;356(1):369-72. doi: 10.1016/j.jcis.2010.12.048. Epub 2010 Dec 19.

PMID:
21272892

Supplemental Content

Support Center