Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100


Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways.

Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y.

Mol Cell Proteomics. 2012 Oct;11(10):1048-62. Epub 2012 Jul 23.


Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli.

Colak G, Xie Z, Zhu AY, Dai L, Lu Z, Zhang Y, Wan X, Chen Y, Cha YH, Lin H, Zhao Y, Tan M.

Mol Cell Proteomics. 2013 Dec;12(12):3509-20. doi: 10.1074/mcp.M113.031567. Epub 2013 Oct 31.


SILAC-based quantification of Sirt1-responsive lysine acetylome.

Chen Y, Colak G, Zhao Y.

Methods Mol Biol. 2013;1077:105-20. doi: 10.1007/978-1-62703-637-5_7.


Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow.

Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA.

Mol Cell Proteomics. 2015 Sep;14(9):2429-40. doi: 10.1074/mcp.O114.047555. Epub 2015 May 7.


Acetylome Analysis Identifies SIRT1 Targets in mRNA-Processing and Chromatin-Remodeling in Mouse Liver.

Kim SY, Sim CK, Tang H, Han W, Zhang K, Xu F.

PLoS One. 2015 Oct 15;10(10):e0140619. doi: 10.1371/journal.pone.0140619. eCollection 2015.


Characterization of novel mechanisms for steatosis from global protein hyperacetylation in ethanol-induced mouse hepatocytes.

Kim SJ, Kwon OK, Ki SH, Jeong TC, Lee S.

Biochem Biophys Res Commun. 2015 Aug 7;463(4):832-8. doi: 10.1016/j.bbrc.2015.04.154. Epub 2015 Jun 6.


Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels.

Liu X, Liu S, Bode L, Liu C, Zhang L, Wang X, Li D, Lei Y, Peng X, Cheng Z, Xie P.

Virology. 2015 Nov;485:58-78. doi: 10.1016/j.virol.2015.06.024. Epub 2015 Jul 23.


A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses.

Xiong Y, Peng X, Cheng Z, Liu W, Wang GL.

J Proteomics. 2016 Apr 14;138:20-9. doi: 10.1016/j.jprot.2016.01.019. Epub 2016 Feb 1.


Lysine deacetylation in ischaemic preconditioning: the role of SIRT1.

Nadtochiy SM, Redman E, Rahman I, Brookes PS.

Cardiovasc Res. 2011 Feb 15;89(3):643-9. doi: 10.1093/cvr/cvq287. Epub 2010 Sep 7.


SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T, Iemura S, Sugiyama R, Yokozeki T, Eishi Y, Koike M, Ikeda K, Chiba T, Yamaza H, Shimokawa I, Song SY, Matsuno A, Mizutani A, Sawabe M, Chao MV, Tanaka M, Kanaho Y, Natsume T, Sugimura H, Date Y, McBurney MW, Guarente L, Setou M.

PLoS One. 2010 Jul 23;5(7):e11755. doi: 10.1371/journal.pone.0011755.


Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

Nie Z, Zhu H, Zhou Y, Wu C, Liu Y, Sheng Q, Lv Z, Zhang W, Yu W, Jiang C, Xie L, Zhang Y, Yao J.

Proteomics. 2015 Sep;15(18):3253-66. doi: 10.1002/pmic.201500001. Epub 2015 Jul 2.


Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development.

Miao J, Lawrence M, Jeffers V, Zhao F, Parker D, Ge Y, Sullivan WJ Jr, Cui L.

Mol Microbiol. 2013 Aug;89(4):660-75. doi: 10.1111/mmi.12303. Epub 2013 Jul 12.


Unexpected extensive lysine acetylation in the trump-card antibiotic producer Streptomyces roseosporus revealed by proteome-wide profiling.

Liao G, Xie L, Li X, Cheng Z, Xie J.

J Proteomics. 2014 Jun 25;106:260-9. doi: 10.1016/j.jprot.2014.04.017. Epub 2014 Apr 22.


Comprehensive profiling of protein lysine acetylation in Escherichia coli.

Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z.

J Proteome Res. 2013 Feb 1;12(2):844-51. doi: 10.1021/pr300912q. Epub 2013 Jan 17.


Activation of PPAR alpha by fenofibrate inhibits apoptosis in vascular adventitial fibroblasts partly through SIRT1-mediated deacetylation of FoxO1.

Wang WR, Liu EQ, Zhang JY, Li YX, Yang XF, He YH, Zhang W, Jing T, Lin R.

Exp Cell Res. 2015 Oct 15;338(1):54-63. doi: 10.1016/j.yexcr.2015.07.027. Epub 2015 Jul 28.


SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60.

Peng L, Ling H, Yuan Z, Fang B, Bloom G, Fukasawa K, Koomen J, Chen J, Lane WS, Seto E.

Mol Cell Biol. 2012 Jul;32(14):2823-36. doi: 10.1128/MCB.00496-12. Epub 2012 May 14.


Sirt1 physically interacts with Tip60 and negatively regulates Tip60-mediated acetylation of H2AX.

Yamagata K, Kitabayashi I.

Biochem Biophys Res Commun. 2009 Dec 25;390(4):1355-60. doi: 10.1016/j.bbrc.2009.10.156. Epub 2009 Nov 4.


Chemical acetylation and deacetylation.

Fritz KS.

Methods Mol Biol. 2013;1077:191-201. doi: 10.1007/978-1-62703-637-5_13.


Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.

Wang TY, Jia YL, Zhang X, Sun QL, Li YC, Zhang JH, Zhao CP, Wang XY, Wang L.

Sci Rep. 2015 Dec 17;5:18443. doi: 10.1038/srep18443.


SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity.

Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, Considine T, Riera T, Suri V, White B, Ellis JL, Vlasuk GP, Loh C.

PLoS One. 2012;7(9):e46364. doi: 10.1371/journal.pone.0046364. Epub 2012 Sep 28.

Supplemental Content

Support Center