Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

Ambrosi A, Chua CK, Khezri B, Sofer Z, Webster RD, Pumera M.

Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):12899-904. doi: 10.1073/pnas.1205388109. Epub 2012 Jul 23.

2.

Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium.

Poh HL, Sofer Z, Luxa J, Pumera M.

Small. 2014 Apr 24;10(8):1529-35. doi: 10.1002/smll.201303002. Epub 2013 Dec 16.

PMID:
24344051
3.
4.

Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements.

Wong CH, Sofer Z, Kubešová M, Kučera J, Matějková S, Pumera M.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13774-9. doi: 10.1073/pnas.1413389111. Epub 2014 Sep 8.

5.

Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications.

Moo JG, Ambrosi A, Bonanni A, Pumera M.

Chem Asian J. 2012 Apr;7(4):759-70. doi: 10.1002/asia.201100852. Epub 2012 Feb 1.

PMID:
22298372
6.

Geographical and geological origin of natural graphite heavily influence the electrical and electrochemical properties of chemically modified graphenes.

Wong CH, Sofer Z, Pumera M.

Chemistry. 2015 Jun 1;21(23):8435-40. doi: 10.1002/chem.201500116. Epub 2015 Apr 9.

PMID:
25858504
7.

Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities.

Tan SM, Ambrosi A, Khezri B, Webster RD, Pumera M.

Phys Chem Chem Phys. 2014 Apr 21;16(15):7058-65. doi: 10.1039/c4cp00371c. Epub 2014 Mar 10.

PMID:
24615543
8.

Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.

Sofer Z, Jankovský O, Šimek P, Soferová L, Sedmidubský D, Pumera M.

Nanoscale. 2014 Feb 21;6(4):2153-60. doi: 10.1039/c3nr05407a. Epub 2013 Dec 23.

PMID:
24366534
9.

Electrochemistry at chemically modified graphenes.

Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M.

Chemistry. 2011 Sep 12;17(38):10763-70. doi: 10.1002/chem.201101117. Epub 2011 Aug 11.

PMID:
21837720
10.

Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications.

Xue Y, Chen H, Yu D, Wang S, Yardeni M, Dai Q, Guo M, Liu Y, Lu F, Qu J, Dai L.

Chem Commun (Camb). 2011 Nov 14;47(42):11689-91. doi: 10.1039/c1cc14789g. Epub 2011 Sep 26.

PMID:
21952144
11.

Impedimetric thrombin aptasensor based on chemically modified graphenes.

Loo AH, Bonanni A, Pumera M.

Nanoscale. 2012 Jan 7;4(1):143-7. doi: 10.1039/c1nr10966a. Epub 2011 Nov 8.

PMID:
22068751
12.

Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis.

Giovanni M, Poh HL, Ambrosi A, Zhao G, Sofer Z, Šaněk F, Khezri B, Webster RD, Pumera M.

Nanoscale. 2012 Aug 21;4(16):5002-8. doi: 10.1039/c2nr31077e. Epub 2012 Jul 5.

PMID:
22763466
13.

Chemically-modified graphenes for oxidation of DNA bases: analytical parameters.

Goh MS, Bonanni A, Ambrosi A, Sofer Z, Pumera M.

Analyst. 2011 Nov 21;136(22):4738-44. doi: 10.1039/c1an15631d. Epub 2011 Sep 29.

PMID:
21956120
14.

Graphene-based nanomaterials and their electrochemistry.

Pumera M.

Chem Soc Rev. 2010 Nov;39(11):4146-57. doi: 10.1039/c002690p. Epub 2010 Jul 9. Review.

PMID:
20623061
15.

Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

Poh HL, Šimek P, Sofer Z, Pumera M.

ACS Nano. 2013 Jun 25;7(6):5262-72. doi: 10.1021/nn401296b. Epub 2013 May 8.

PMID:
23656223
16.

Graphene platforms for the detection of caffeine in real samples.

Khoo WY, Pumera M, Bonanni A.

Anal Chim Acta. 2013 Dec 4;804:92-7. doi: 10.1016/j.aca.2013.09.062. Epub 2013 Oct 12.

PMID:
24267068
17.

Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity.

Hui KH, Pumera M, Bonanni A.

Chemistry. 2015 Aug 10;21(33):11793-8. doi: 10.1002/chem.201501691. Epub 2015 Jul 1.

PMID:
26134061
18.

A green approach to the synthesis of graphene nanosheets.

Guo HL, Wang XF, Qian QY, Wang FB, Xia XH.

ACS Nano. 2009 Sep 22;3(9):2653-9. doi: 10.1021/nn900227d.

PMID:
19691285
19.

Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

Schumacher CM, Grass RN, Rossier M, Athanassiou EK, Stark WJ.

Langmuir. 2012 Mar 6;28(9):4565-72. doi: 10.1021/la3000894. Epub 2012 Feb 27.

PMID:
22324507
20.

Simple room-temperature preparation of high-yield large-area graphene oxide.

Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR.

Int J Nanomedicine. 2011;6:3443-8. doi: 10.2147/IJN.S26812. Epub 2011 Dec 19.

Supplemental Content

Support Center