Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Hydrogels in spinal cord injury repair strategies.

Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P.

ACS Chem Neurosci. 2011 Jul 20;2(7):336-45. doi: 10.1021/cn200030w. Epub 2011 May 4. Review.

2.

Biocompatible hydrogels in spinal cord injury repair.

Hejcl A, Lesný P, Prádný M, Michálek J, Jendelová P, Stulík J, Syková E.

Physiol Res. 2008;57 Suppl 3:S121-32. Epub 2008 May 13. Review.

3.

Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury.

Baumann MD, Kang CE, Tator CH, Shoichet MS.

Biomaterials. 2010 Oct;31(30):7631-9. doi: 10.1016/j.biomaterials.2010.07.004. Epub 2010 Jul 24.

PMID:
20656347
4.

Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat.

Hejcl A, Urdzikova L, Sedy J, Lesny P, Pradny M, Michalek J, Burian M, Hajek M, Zamecnik J, Jendelova P, Sykova E.

J Neurosurg Spine. 2008 Jan;8(1):67-73. doi: 10.3171/SPI-08/01/067.

PMID:
18173349
5.

25th anniversary article: Rational design and applications of hydrogels in regenerative medicine.

Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A.

Adv Mater. 2014 Jan 8;26(1):85-123. Review.

6.

Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord.

Führmann T, Obermeyer J, Tator CH, Shoichet MS.

Methods. 2015 Aug;84:60-9. doi: 10.1016/j.ymeth.2015.03.023. Epub 2015 Apr 3.

PMID:
25846399
7.

HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury.

Hejcl A, Sedý J, Kapcalová M, Toro DA, Amemori T, Lesný P, Likavcanová-Mašínová K, Krumbholcová E, Prádný M, Michálek J, Burian M, Hájek M, Jendelová P, Syková E.

Stem Cells Dev. 2010 Oct;19(10):1535-46. doi: 10.1089/scd.2009.0378.

PMID:
20053128
8.

Injectable hydrogel materials for spinal cord regeneration: a review.

Macaya D, Spector M.

Biomed Mater. 2012 Feb;7(1):012001. doi: 10.1088/1748-6041/7/1/012001. Epub 2012 Jan 13. Review.

PMID:
22241481
9.

SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair.

Kubinová Š, Horák D, Hejčl A, Plichta Z, Kotek J, Proks V, Forostyak S, Syková E.

J Tissue Eng Regen Med. 2015 Nov;9(11):1298-309. doi: 10.1002/term.1694. Epub 2013 Feb 11.

PMID:
23401421
10.

Injectable Hydrogels for Spinal Cord Repair: A Focus on Swelling and Intraspinal Pressure.

Khaing ZZ, Ehsanipour A, Hofstetter CP, Seidlits SK.

Cells Tissues Organs. 2016;202(1-2):67-84. Epub 2016 Oct 5. Review.

PMID:
27701162
11.

Cartilage and bone tissue engineering using hydrogels.

Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P.

Biomed Mater Eng. 2006;16(4 Suppl):S107-13. Review.

PMID:
16823101
12.

Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair.

Kubinová S, Horák D, Hejčl A, Plichta Z, Kotek J, Syková E.

J Biomed Mater Res A. 2011 Dec 15;99(4):618-29. doi: 10.1002/jbm.a.33221. Epub 2011 Sep 27.

PMID:
21953978
13.

Multiple drug delivery hydrogel system for spinal cord injury repair strategies.

Perale G, Rossi F, Santoro M, Peviani M, Papa S, Llupi D, Torriani P, Micotti E, Previdi S, Cervo L, Sundström E, Boccaccini AR, Masi M, Forloni G, Veglianese P.

J Control Release. 2012 Apr 30;159(2):271-80. doi: 10.1016/j.jconrel.2011.12.025. Epub 2011 Dec 29.

PMID:
22227024
14.

Evaluation of mechanical properties and therapeutic effect of injectable self-assembling hydrogels for spinal cord injury.

Cigognini D, Silva D, Paloppi S, Gelain F.

J Biomed Nanotechnol. 2014 Feb;10(2):309-23.

PMID:
24738339
15.

Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies.

Woerly S, Petrov P, Syková E, Roitbak T, Simonová Z, Harvey AR.

Tissue Eng. 1999 Oct;5(5):467-88.

PMID:
10586102
16.

Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair.

Hejcl A, Lesný P, Prádný M, Sedý J, Zámecník J, Jendelová P, Michálek J, Syková E.

J Mater Sci Mater Med. 2009 Jul;20(7):1571-7. doi: 10.1007/s10856-009-3714-4. Epub 2009 Feb 28.

PMID:
19252968
17.

Hydrogels in a historical perspective: from simple networks to smart materials.

Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE.

J Control Release. 2014 Sep 28;190:254-73. doi: 10.1016/j.jconrel.2014.03.052. Epub 2014 Apr 16. Review.

PMID:
24746623
18.

Regenerative medicine for the treatment of spinal cord injury: more than just promises?

Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E.

J Cell Mol Med. 2012 Nov;16(11):2564-82. doi: 10.1111/j.1582-4934.2012.01603.x. Review.

19.

Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels.

Hejčl A, Růžička J, Kapcalová M, Turnovcová K, Krumbholcová E, Přádný M, Michálek J, Cihlář J, Jendelová P, Syková E.

Stem Cells Dev. 2013 Oct 15;22(20):2794-805. doi: 10.1089/scd.2012.0616. Epub 2013 Jul 19.

PMID:
23750454
20.

[Biomaterials engineering strategies for spinal cord regeneration: state of the art].

Lis A, Szarek D, Laska J.

Polim Med. 2013 Apr-Jun;43(2):59-80. Review. Polish.

Supplemental Content

Support Center