Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Structural features of isomerizable aspartyl residues in human α-crystallins.

Shimizu K, Kita A, Fujii N, Miki K.

Mol Vis. 2012;18:1823-7. Epub 2012 Jul 4.

2.
3.

C-terminal truncation of alpha-crystallin in hereditary cataractous rat lens.

Takeuchi N, Ouchida A, Kamei A.

Biol Pharm Bull. 2004 Mar;27(3):308-14.

4.
5.
6.

Influence of Lβ-, Dα- and Dβ-Asp isomers of the Asp-76 residue on the properties of αA-crystallin 70-88 peptide.

Fujii N, Fujii N, Kida M, Kinouchi T.

Amino Acids. 2010 Nov;39(5):1393-9. doi: 10.1007/s00726-010-0597-0. Epub 2010 May 1.

PMID:
20437187
7.

Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.

Sakaue H, Takata T, Fujii N, Sasaki H, Fujii N.

Biochim Biophys Acta. 2015 Jan;1854(1):1-9. doi: 10.1016/j.bbapap.2014.10.006. Epub 2014 Oct 22.

PMID:
25450505
8.

The mechanisms of simultaneous stereoinversion, racemization, and isomerization at specific aspartyl residues of aged lens proteins.

Fujii N, Momose Y, Ishii N, Takita M, Akaboshi M, Kodama M.

Mech Ageing Dev. 1999 Mar 15;107(3):347-58. Review.

PMID:
10360687
9.

Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.

Wu M, Zhang X, Bian Q, Taylor A, Liang JJ, Ding L, Horwitz J, Shang F.

Invest Ophthalmol Vis Sci. 2012 May 4;53(6):2541-50. doi: 10.1167/iovs.11-9147.

10.
11.

Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.

Harrington V, Srivastava OP, Kirk M.

Mol Vis. 2007 Sep 14;13:1680-94.

PMID:
17893670
12.

Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function.

Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D.

Protein Sci. 2010 May;19(5):1031-43. doi: 10.1002/pro.380.

13.

Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins.

Tiwary E, Hegde S, Purushotham S, Deivanayagam C, Srivastava O.

PLoS One. 2015 Dec 11;10(12):e0144621. doi: 10.1371/journal.pone.0144621. eCollection 2015.

14.

The interaction between alphaA- and alphaB-crystallin is sequence-specific.

Sreelakshmi Y, Sharma KK.

Mol Vis. 2006 May 24;12:581-7.

15.
16.

Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.

Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ.

Mol Vis. 2011;17:1457-67. Epub 2011 Jun 1.

17.
18.

Isomerization of Asp residues plays an important role in αA-crystallin dissociation.

Takata T, Fujii N.

FEBS J. 2016 Mar;283(5):850-9. doi: 10.1111/febs.13635. Epub 2016 Jan 21.

19.

Isomerization of aspartyl residues in crystallins and its influence upon cataract.

Fujii N, Takata T, Fujii N, Aki K.

Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):183-91. doi: 10.1016/j.bbagen.2015.08.001. Epub 2015 Aug 12. Review.

PMID:
26275494
20.

Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide.

Takata T, Fujii N.

J Pharm Biomed Anal. 2015 Dec 10;116:139-44. doi: 10.1016/j.jpba.2015.06.017. Epub 2015 Jun 24.

PMID:
26188790

Supplemental Content

Support Center