Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis.

Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S.

J Biol Chem. 2012 Aug 31;287(36):30755-68. doi: 10.1074/jbc.M112.370916.

2.

Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis.

Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A, Brun C, Gruss A, Gaudu P.

J Biol Chem. 2012 Feb 10;287(7):4752-8. doi: 10.1074/jbc.M111.297531.

3.

HrtBA and menaquinones control haem homeostasis in Lactococcus lactis.

Joubert L, Derré-Bobillot A, Gaudu P, Gruss A, Lechardeur D.

Mol Microbiol. 2014 Aug;93(4):823-33. doi: 10.1111/mmi.12705.

4.

Structure of the transcription regulator CcpA from Lactococcus lactis.

Loll B, Kowalczyk M, Alings C, Chieduch A, Bardowski J, Saenger W, Biesiadka J.

Acta Crystallogr D Biol Crystallogr. 2007 Apr;63(Pt 4):431-6.

PMID:
17372346
5.

NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR.

Giardina G, Rinaldo S, Johnson KA, Di Matteo A, Brunori M, Cutruzzolà F.

J Mol Biol. 2008 May 16;378(5):1002-15. doi: 10.1016/j.jmb.2008.03.013.

PMID:
18420222
6.

Lactococcus lactis HemW (HemN) is a haem-binding protein with a putative role in haem trafficking.

Abicht HK, Martinez J, Layer G, Jahn D, Solioz M.

Biochem J. 2012 Mar 1;442(2):335-43. doi: 10.1042/BJ20111618.

PMID:
22142238
7.

The structural basis for peptide selection by the transport receptor OppA.

Berntsson RP, Doeven MK, Fusetti F, Duurkens RH, Sengupta D, Marrink SJ, Thunnissen AM, Poolman B, Slotboom DJ.

EMBO J. 2009 May 6;28(9):1332-40. doi: 10.1038/emboj.2009.65.

9.

Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms.

Palanca C, Rubio V.

FEBS J. 2016 Mar;283(6):1039-59. doi: 10.1111/febs.13643.

10.

Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB.

Madsen SM, Hindré T, Le Pennec JP, Israelsen H, Dufour A.

Mol Microbiol. 2005 May;56(3):735-46.

11.

The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism.

Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D.

J Bacteriol. 2006 Apr;188(8):2752-60.

12.

Selenomethionine incorporation in proteins expressed in Lactococcus lactis.

Berntsson RP, Alia Oktaviani N, Fusetti F, Thunnissen AM, Poolman B, Slotboom DJ.

Protein Sci. 2009 May;18(5):1121-7. doi: 10.1002/pro.97.

13.

Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS.

Tripathi S, O'Neill MJ, Wilks A, Poulos TL.

J Inorg Biochem. 2013 Nov;128:131-6. doi: 10.1016/j.jinorgbio.2013.07.030.

14.
15.

ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression.

Varmanen P, Ingmer H, Vogensen FK.

Microbiology. 2000 Jun;146 ( Pt 6):1447-55.

PMID:
10846223
17.

Transcriptional regulation of fatty acid biosynthesis in Lactococcus lactis.

Eckhardt TH, Skotnicka D, Kok J, Kuipers OP.

J Bacteriol. 2013 Mar;195(5):1081-9. doi: 10.1128/JB.02043-12.

18.

Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.

Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P.

J Bacteriol. 2004 Mar;186(6):1648-57.

19.

Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403.

Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E.

J Bacteriol. 2005 Jun;187(11):3762-78.

20.

Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.

Andersson U, Molenaar D, Rådström P, de Vos WM.

Syst Appl Microbiol. 2005 Apr;28(3):187-95.

PMID:
15900965

Supplemental Content

Support Center