Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia.

Thomas MG, McLean RJ, Kohl S, Sheth V, Gottlob I.

Br J Ophthalmol. 2012 Sep;96(9):1232-6. doi: 10.1136/bjophthalmol-2012-301737. Epub 2012 Jul 11.

PMID:
22790432
2.

Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography.

Thiadens AA, Somervuo V, van den Born LI, Roosing S, van Schooneveld MJ, Kuijpers RW, van Moll-Ramirez N, Cremers FP, Hoyng CB, Klaver CC.

Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5952-7. doi: 10.1167/iovs.10-5680. Epub 2010 Jun 23.

PMID:
20574029
3.

Retinal morphology of patients with achromatopsia during early childhood: implications for gene therapy.

Yang P, Michaels KV, Courtney RJ, Wen Y, Greninger DA, Reznick L, Karr DJ, Wilson LB, Weleber RG, Pennesi ME.

JAMA Ophthalmol. 2014 Jul;132(7):823-31. doi: 10.1001/jamaophthalmol.2014.685.

PMID:
24676353
4.

Progressive cone dystrophy associated with mutation in CNGB3.

Michaelides M, Aligianis IA, Ainsworth JR, Good P, Mollon JD, Maher ER, Moore AT, Hunt DM.

Invest Ophthalmol Vis Sci. 2004 Jun;45(6):1975-82.

PMID:
15161866
5.

Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

Greenberg JP, Sherman J, Zweifel SA, Chen RW, Duncker T, Kohl S, Baumann B, Wissinger B, Yannuzzi LA, Tsang SH.

JAMA Ophthalmol. 2014 Apr 1;132(4):437-45. doi: 10.1001/jamaophthalmol.2013.7987.

6.
7.

Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography.

Ojima Y, Hangai M, Sasahara M, Gotoh N, Inoue R, Yasuno Y, Makita S, Yatagai T, Tsujikawa A, Yoshimura N.

Ophthalmology. 2007 Dec;114(12):2197-207. Epub 2007 May 15.

PMID:
17507096
8.

High-resolution spectral domain optical coherence tomography features in adult onset foveomacular vitelliform dystrophy.

Puche N, Querques G, Benhamou N, Tick S, Mimoun G, Martinelli D, Soubrane G, Souied EH.

Br J Ophthalmol. 2010 Sep;94(9):1190-6. doi: 10.1136/bjo.2009.175075. Epub 2010 Jun 24.

PMID:
20576764
9.

In vivo assessment of thickness and reflectivity in a rat outer retinal degeneration model with ultrahigh resolution optical coherence tomography.

Hariri S, Moayed AA, Choh V, Bizheva K.

Invest Ophthalmol Vis Sci. 2012 Apr 18;53(4):1982-9. doi: 10.1167/iovs.11-8395.

PMID:
22395894
10.

Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy.

Thiadens AA, Roosing S, Collin RW, van Moll-Ramirez N, van Lith-Verhoeven JJ, van Schooneveld MJ, den Hollander AI, van den Born LI, Hoyng CB, Cremers FP, Klaver CC.

Ophthalmology. 2010 Apr;117(4):825-30.e1. doi: 10.1016/j.ophtha.2009.09.008. Epub 2010 Jan 15.

PMID:
20079539
11.

Spectral domain optical coherence tomography findings in CNGB3-associated achromatopsia and therapeutic implications.

McClintock M, Peden MC, Kay CN.

Adv Exp Med Biol. 2014;801:551-7. doi: 10.1007/978-1-4614-3209-8_70.

PMID:
24664743
12.

Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia.

Langlo CS, Patterson EJ, Higgins BP, Summerfelt P, Razeen MM, Erker LR, Parker M, Collison FT, Fishman GA, Kay CN, Zhang J, Weleber RG, Yang P, Wilson DJ, Pennesi ME, Lam BL, Chiang J, Chulay JD, Dubra A, Hauswirth WW, Carroll J; ACHM-001 Study Group.

Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):3984-95. doi: 10.1167/iovs.16-19313.

13.

Foveal cavitation as an optical coherence tomography finding in central cone dysfunction.

Leng T, Marmor MF, Kellner U, Thompson DA, Renner AB, Moore W, Sowden JC.

Retina. 2012 Jul;32(7):1411-9. doi: 10.1097/IAE.0b013e318236e4ea.

PMID:
22466470
14.

[Optical coherence tomography in the diagnosis of achromatopsia].

Burgueño-Montañés C, Colunga-Cueva M.

Arch Soc Esp Oftalmol. 2014 Feb;89(2):70-3. doi: 10.1016/j.oftal.2012.07.025. Epub 2012 Oct 6. Spanish.

PMID:
24269402
15.

Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2.

Wissinger B, Dangel S, Jägle H, Hansen L, Baumann B, Rudolph G, Wolf C, Bonin M, Koeppen K, Ladewig T, Kohl S, Zrenner E, Rosenberg T.

Invest Ophthalmol Vis Sci. 2008 Feb;49(2):751-7. doi: 10.1167/iovs.07-0471.

PMID:
18235024
16.

High-resolution optical coherence tomography imaging in KCNV2 retinopathy.

Sergouniotis PI, Holder GE, Robson AG, Michaelides M, Webster AR, Moore AT.

Br J Ophthalmol. 2012 Feb;96(2):213-7. doi: 10.1136/bjo.2011.203638. Epub 2011 May 10.

PMID:
21558291
17.

Foveal anatomic changes in a progressing stage 1 macular hole documented by spectral-domain optical coherence tomography.

Takahashi A, Nagaoka T, Ishiko S, Kameyama D, Yoshida A.

Ophthalmology. 2010 Apr;117(4):806-10. doi: 10.1016/j.ophtha.2009.09.022. Epub 2010 Feb 4.

PMID:
20132987
18.

Integrity of foveal photoreceptor layer in central retinal vein occlusion.

Ota M, Tsujikawa A, Kita M, Miyamoto K, Sakamoto A, Yamaike N, Kotera Y, Yoshimura N.

Retina. 2008 Nov-Dec;28(10):1502-8. doi: 10.1097/IAE.0b013e3181840b3c.

PMID:
18997611
19.

Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure.

Itoh Y, Inoue M, Rii T, Hiraoka T, Hirakata A.

Ophthalmology. 2012 Jul;119(7):1438-46. doi: 10.1016/j.ophtha.2012.01.023. Epub 2012 Mar 14.

PMID:
22424577
20.

Foveal microstructure and visual acuity in surgically closed macular holes: spectral-domain optical coherence tomographic analysis.

Wakabayashi T, Fujiwara M, Sakaguchi H, Kusaka S, Oshima Y.

Ophthalmology. 2010 Sep;117(9):1815-24. doi: 10.1016/j.ophtha.2010.01.017. Epub 2010 May 15.

PMID:
20472291

Supplemental Content

Support Center