Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Retinal dopamine mediates multiple dimensions of light-adapted vision.

Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, Palmiter RD, Iuvone PM, McMahon DG.

J Neurosci. 2012 Jul 4;32(27):9359-68. doi: 10.1523/JNEUROSCI.0711-12.2012.

2.

Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.

Jackson CR, Capozzi M, Dai H, McMahon DG.

J Neurosci. 2014 Mar 26;34(13):4627-33. doi: 10.1523/JNEUROSCI.4887-13.2014.

3.

D1 dopamine receptors modulate cone ON bipolar cell Nav channels to control daily rhythms in photopic vision.

Smith BJ, Côté PD, Tremblay F.

Chronobiol Int. 2015 Feb;32(1):48-58. doi: 10.3109/07420528.2014.951054. Epub 2014 Aug 26.

PMID:
25157610
4.
5.

Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors.

Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM.

J Neurosci. 2002 Mar 15;22(6):2063-73.

6.

Dopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina.

Manglapus MK, Iuvone PM, Underwood H, Pierce ME, Barlow RB.

J Neurosci. 1999 May 15;19(10):4132-41.

7.

Dopaminergic control of light-adaptive synaptic plasticity and role in goldfish visual behavior.

Yazulla S, Lin ZS, Studholme KM.

Vision Res. 1996 Dec;36(24):4045-57.

9.

Dopamine and retinal function.

Witkovsky P.

Doc Ophthalmol. 2004 Jan;108(1):17-40. Review.

PMID:
15104164
10.

Dark rearing alters the normal development of spatiotemporal response properties but not of contrast detection threshold in mouse retinal ganglion cells.

Akimov NP, Rentería RC.

Dev Neurobiol. 2014 Jul;74(7):692-706. doi: 10.1002/dneu.22164. Epub 2014 Jan 29.

11.
12.

Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells.

Hwang CK, Chaurasia SS, Jackson CR, Chan GC, Storm DR, Iuvone PM.

J Neurosci. 2013 Sep 18;33(38):14989-97. doi: 10.1523/JNEUROSCI.2039-13.2013.

13.

The electroretinogram of the rhodopsin knockout mouse.

Toda K, Bush RA, Humphries P, Sieving PA.

Vis Neurosci. 1999 Mar-Apr;16(2):391-8.

PMID:
10367972
14.

The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina.

Yang J, Nemargut JP, Wang GY.

Brain Res. 2011 May 16;1390:70-9. doi: 10.1016/j.brainres.2011.03.017. Epub 2011 Mar 13.

PMID:
21406186
15.

Dopaminergic control mechanisms of light adaptive processes in teleost retinal morphology.

Wagner HJ.

Neurosci Res Suppl. 1991;15:S131-43. No abstract available.

PMID:
1839172
16.

Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes.

Aung MH, Park HN, Han MK, Obertone TS, Abey J, Aseem F, Thule PM, Iuvone PM, Pardue MT.

J Neurosci. 2014 Jan 15;34(3):726-36. doi: 10.1523/JNEUROSCI.3483-13.2014.

17.
18.

ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition).

Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM; International Society For Clinical Electrophysiology of Vision.

Doc Ophthalmol. 2012 Feb;124(1):1-13. doi: 10.1007/s10633-011-9296-8. Epub 2011 Oct 30. Review.

19.

Dopaminergic modulation of visual sensitivity in man.

Masson G, Mestre D, Blin O.

Fundam Clin Pharmacol. 1993;7(8):449-63. Review.

PMID:
8294083
20.

Neuropharmacology of vision in goldfish: a review.

Mora-Ferrer C, Neumeyer C.

Vision Res. 2009 May;49(9):960-9. doi: 10.1016/j.visres.2008.08.004. Epub 2008 Sep 27.

Supplemental Content

Support Center