Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 200

1.

Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells.

Guo QS, Zhu MY, Wang L, Fan XJ, Lu YH, Wang ZW, Zhu SJ, Wang Y, Huang Y.

Exp Diabetes Res. 2012;2012:672013. doi: 10.1155/2012/672013. Epub 2012 Jun 19.

2.

Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA.

Wang L, Huang Y, Guo Q, Fan X, Lu Y, Zhu S, Wang Y, Bo X, Chang X, Zhu M, Wang Z.

Diabetes Res Clin Pract. 2014 Jun;104(3):383-92. doi: 10.1016/j.diabres.2014.03.017. Epub 2014 Apr 1.

PMID:
24794627
3.

[Differentiation of polygene-modified bone marrow mesenchymal stem cells into insulin-producing cells].

Guo QS, Zhu MY, Fan XJ, Lu YH, Wang L, Wang ZW.

Zhonghua Yi Xue Za Zhi. 2011 Aug 16;91(30):2148-52. Chinese.

PMID:
22093995
4.

Combination of MafA, PDX-1 and NeuroD is a useful tool to efficiently induce insulin-producing surrogate beta-cells.

Kaneto H, Matsuoka TA, Katakami N, Matsuhisa M.

Curr Med Chem. 2009;16(24):3144-51. Review.

PMID:
19689288
5.

Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells.

Zhao M, Amiel SA, Ajami S, Jiang J, Rela M, Heaton N, Huang GC.

PLoS One. 2008 Jul 16;3(7):e2666. doi: 10.1371/journal.pone.0002666.

6.

The study of regulatory effects of Pdx-1, MafA and NeuroD1 on the activity of porcine insulin promoter and the expression of human islet amyloid polypeptide.

Liu XD, Ruan JX, Xia JH, Yang SL, Fan JH, Li K.

Mol Cell Biochem. 2014 Sep;394(1-2):59-66. doi: 10.1007/s11010-014-2081-8. Epub 2014 May 14.

PMID:
24825179
7.

PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages.

Limbert C, Päth G, Ebert R, Rothhammer V, Kassem M, Jakob F, Seufert J.

Cytotherapy. 2011 Aug;13(7):802-13. doi: 10.3109/14653249.2011.571248. Epub 2011 Apr 21.

PMID:
21506889
8.

Reprogramming of mice primary hepatocytes into insulin-producing cells by transfection with multicistronic vectors.

Luo H, Chen R, Yang R, Liu Y, Chen Y, Shu Y, Chen H.

J Diabetes Res. 2014;2014:716163. doi: 10.1155/2014/716163. Epub 2014 May 19.

9.

Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M.

Mol Biol Rep. 2014 Jul;41(7):4783-94. doi: 10.1007/s11033-014-3349-5. Epub 2014 Apr 10.

PMID:
24718781
10.

Glucose regulation of insulin gene expression in pancreatic beta-cells.

Andrali SS, Sampley ML, Vanderford NL, Ozcan S.

Biochem J. 2008 Oct 1;415(1):1-10. doi: 10.1042/BJ20081029. Review.

PMID:
18778246
11.

Expression of Ins1 and Ins2 genes in mouse fetal liver.

Murakami-Kawaguchi S, Takasawa S, Onogawa T, Nata K, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Yamauchi A, Ota H, Takeda M, Kato M, Okamoto H.

Cell Tissue Res. 2014 Feb;355(2):303-14. doi: 10.1007/s00441-013-1741-4. Epub 2013 Nov 21.

PMID:
24258027
12.

A crucial role of MafA as a novel therapeutic target for diabetes.

Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M, Yamasaki Y.

J Biol Chem. 2005 Apr 15;280(15):15047-52. Epub 2005 Jan 20.

13.

Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression.

Wang H, Yang Y, Ho G, Lin X, Wu W, Li W, Lin L, Feng X, Huo X, Jiang J, Liu X, Huang T, Wei C, Ma L.

Mol Med Rep. 2013 Sep;8(3):769-74. doi: 10.3892/mmr.2013.1598. Epub 2013 Jul 23.

PMID:
23900717
14.

Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation.

Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S.

Stem Cells. 2007 Nov;25(11):2837-44. Epub 2007 Jul 5.

15.

Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells.

Takemitsu H, Zhao D, Ishikawa S, Michishita M, Arai T, Yamamoto I.

Gen Comp Endocrinol. 2013 Aug 1;189:1-6. doi: 10.1016/j.ygcen.2013.04.009. Epub 2013 Apr 25.

PMID:
23624121
16.

The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription.

ZeRuth GT, Takeda Y, Jetten AM.

Mol Endocrinol. 2013 Oct;27(10):1692-705. doi: 10.1210/me.2013-1117. Epub 2013 Aug 8.

17.

Characterization of insulin-producing cells derived from PDX-1-transfected neural stem cells.

Wang H, Jiang Z, Li A, Gao Y.

Mol Med Rep. 2012 Dec;6(6):1428-32. doi: 10.3892/mmr.2012.1089. Epub 2012 Sep 20.

PMID:
23008108
18.

Insulin but not glucagon gene is silenced in human pancreas-derived mesenchymal stem cells.

Wilson LM, Wong SH, Yu N, Geras-Raaka E, Raaka BM, Gershengorn MC.

Stem Cells. 2009 Nov;27(11):2703-11. doi: 10.1002/stem.229.

19.

Adult mouse intrahepatic biliary epithelial cells induced in vitro to become insulin-producing cells.

Nagaya M, Katsuta H, Kaneto H, Bonner-Weir S, Weir GC.

J Endocrinol. 2009 Apr;201(1):37-47. doi: 10.1677/JOE-08-0482. Epub 2009 Jan 23.

20.

Transcription factors as therapeutic targets for diabetes.

Miyatsuka T, Matsuoka TA, Kaneto H.

Expert Opin Ther Targets. 2008 Nov;12(11):1431-42. doi: 10.1517/14728222.12.11.1431 .

PMID:
18851698

Supplemental Content

Support Center