Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 195

1.

Effect of image quality on calcification detection in digital mammography.

Warren LM, Mackenzie A, Cooke J, Given-Wilson RM, Wallis MG, Chakraborty DP, Dance DR, Bosmans H, Young KC.

Med Phys. 2012 Jun;39(6):3202-13. doi: 10.1118/1.4718571.

2.

Breast cancer detection rates using four different types of mammography detectors.

Mackenzie A, Warren LM, Wallis MG, Cooke J, Given-Wilson RM, Dance DR, Chakraborty DP, Halling-Brown MD, Looney PT, Young KC.

Eur Radiol. 2016 Mar;26(3):874-83. doi: 10.1007/s00330-015-3885-y. Epub 2015 Jun 25.

3.

Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms.

Salvagnini E, Bosmans H, Van Ongeval C, Van Steen A, Michielsen K, Cockmartin L, Struelens L, Marshall NW.

Med Phys. 2016 Sep;43(9):5104. doi: 10.1118/1.4960630.

PMID:
27587041
4.

The relationship between cancer detection in mammography and image quality measurements.

Mackenzie A, Warren LM, Wallis MG, Given-Wilson RM, Cooke J, Dance DR, Chakraborty DP, Halling-Brown MD, Looney PT, Young KC.

Phys Med. 2016 Apr;32(4):568-74. doi: 10.1016/j.ejmp.2016.03.004. Epub 2016 Apr 6.

5.

Evaluation of clinical image processing algorithms used in digital mammography.

Zanca F, Jacobs J, Van Ongeval C, Claus F, Celis V, Geniets C, Provost V, Pauwels H, Marchal G, Bosmans H.

Med Phys. 2009 Mar;36(3):765-75.

PMID:
19378737
6.

Dose dependence of mass and microcalcification detection in digital mammography: free response human observer studies.

Ruschin M, Timberg P, B├ąth M, Hemdal B, Svahn T, Saunders RS, Samei E, Andersson I, Mattsson S, Chakrabort DP, Tingber A.

Med Phys. 2007 Feb;34(2):400-7.

7.

The effect of image processing on the detection of cancers in digital mammography.

Warren LM, Given-Wilson RM, Wallis MG, Cooke J, Halling-Brown MD, Mackenzie A, Chakraborty DP, Bosmans H, Dance DR, Young KC.

AJR Am J Roentgenol. 2014 Aug;203(2):387-93. doi: 10.2214/AJR.13.11812.

PMID:
25055275
8.

Image quality, threshold contrast and mean glandular dose in CR mammography.

Jakubiak RR, Gamba HR, Neves EB, Peixoto JE.

Phys Med Biol. 2013 Sep 21;58(18):6565-83. doi: 10.1088/0031-9155/58/18/6565. Epub 2013 Sep 4.

PMID:
24002695
9.

Conversion of mammographic images to appear with the noise and sharpness characteristics of a different detector and x-ray system.

Mackenzie A, Dance DR, Workman A, Yip M, Wells K, Young KC.

Med Phys. 2012 May;39(5):2721-34. doi: 10.1118/1.4704525.

PMID:
22559643
10.

Improved microcalcification visualization using dual-energy digital mammography.

Tsai CJ, Chen RC, Peng HL, Hsu WL, Lee JJ.

Acta Radiol. 2013 Jul;54(6):614-21. doi: 10.1177/0284185113481017. Epub 2013 Apr 30.

PMID:
23528569
11.

Quantification of Al-equivalent thickness of just visible microcalcifications in full field digital mammograms.

Carton AK, Bosmans H, Vandenbroucke D, Souverijns G, Van Ongeval C, Dragusin O, Marchal G.

Med Phys. 2004 Jul;31(7):2165-76.

PMID:
15305471
12.

The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis.

Shaheen E, Van Ongeval C, Zanca F, Cockmartin L, Marshall N, Jacobs J, Young KC, R Dance D, Bosmans H.

Med Phys. 2011 Dec;38(12):6659-71. doi: 10.1118/1.3662868.

PMID:
22149848
13.

Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.

Sahiner B, Chan HP, Hadjiiski LM, Helvie MA, Wei J, Zhou C, Lu Y.

Med Phys. 2012 Jan;39(1):28-39. doi: 10.1118/1.3662072.

14.

Visually lossless threshold determination for microcalcification detection in wavelet compressed mammograms.

Kocsis O, Costaridou L, Varaki L, Likaki E, Kalogeropoulou C, Skiadopoulos S, Panayiotakis G.

Eur Radiol. 2003 Oct;13(10):2390-6. Epub 2003 Feb 15.

PMID:
14534807
15.

Comparison of visual grading and free-response ROC analyses for assessment of image-processing algorithms in digital mammography.

Zanca F, Van Ongeval C, Claus F, Jacobs J, Oyen R, Bosmans H.

Br J Radiol. 2012 Dec;85(1020):e1233-41. doi: 10.1259/bjr/22608279. Epub 2012 Jul 27.

16.

Dose reduction in full-field digital mammography: an anthropomorphic breast phantom study.

Obenauer S, Hermann KP, Grabbe E.

Br J Radiol. 2003 Jul;76(907):478-82.

PMID:
12857708
17.

A comparison between the electronic magnification (EM) and true magnification (TM) of breast phantom images using a CDMAM phantom.

Vahey K, Ryan E, McLean D, Poulos A, Rickard M.

Eur J Radiol. 2012 Jul;81(7):1514-9. doi: 10.1016/j.ejrad.2011.03.056. Epub 2011 Apr 9.

PMID:
21481555
18.

Image simulation and a model of noise power spectra across a range of mammographic beam qualities.

Mackenzie A, Dance DR, Diaz O, Young KC.

Med Phys. 2014 Dec;41(12):121901. doi: 10.1118/1.4900819.

PMID:
25471961
19.

Evaluation of automated CDMAM readings for non-standard CDMAM imaging conditions: grid-less acquisitions and scatter correction.

Binst J, Sterckx B, Bemelmans F, Cockmartin L, Van Peteghem N, Marshall N, Bosmans H.

Radiat Prot Dosimetry. 2015 Jul;165(1-4):350-3. doi: 10.1093/rpd/ncv085. Epub 2015 Mar 26.

PMID:
25821214
20.

Visual-search observers for assessing tomographic x-ray image quality.

Gifford HC, Liang Z, Das M.

Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.

Supplemental Content

Support Center