Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 166

1.

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.

Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS.

Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.

2.

Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

Attalla R, Ling C, Selvaganapathy P.

Biomed Microdevices. 2016 Feb;18(1):17. doi: 10.1007/s10544-016-0042-6.

PMID:
26842949
3.

Tissue engineering: Perfusable vascular networks.

Forgacs G.

Nat Mater. 2012 Sep;11(9):746-7. doi: 10.1038/nmat3412. No abstract available.

PMID:
22918312
4.

Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.

Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH.

Lab Chip. 2014 Aug 7;14(15):2709-16. doi: 10.1039/c4lc00069b. Epub 2014 Jun 2.

PMID:
24887141
5.

The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds.

Zhao L, Lee VK, Yoo SS, Dai G, Intes X.

Biomaterials. 2012 Jul;33(21):5325-32. doi: 10.1016/j.biomaterials.2012.04.004. Epub 2012 Apr 22.

6.

An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

Xu H, Li H, Ke Q, Chang J.

ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8706-18. doi: 10.1021/acsami.5b00996. Epub 2015 Apr 15.

PMID:
25826222
7.

Geometric control of vascular networks to enhance engineered tissue integration and function.

Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD, Yang MT, Miller JS, Bhatia SN, Chen CS.

Proc Natl Acad Sci U S A. 2013 May 7;110(19):7586-91. doi: 10.1073/pnas.1217796110. Epub 2013 Apr 22.

8.

Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.

Huling J, Ko IK, Atala A, Yoo JJ.

Acta Biomater. 2016 Mar 1;32:190-7. doi: 10.1016/j.actbio.2016.01.005. Epub 2016 Jan 6.

PMID:
26772527
9.

Micropatterning electrospun scaffolds to create intrinsic vascular networks.

Jeffries EM, Nakamura S, Lee KW, Clampffer J, Ijima H, Wang Y.

Macromol Biosci. 2014 Nov;14(11):1514-20. doi: 10.1002/mabi.201400306. Epub 2014 Aug 20.

PMID:
25142314
10.

Biomaterials to prevascularize engineered tissues.

Tian L, George SC.

J Cardiovasc Transl Res. 2011 Oct;4(5):685-98. doi: 10.1007/s12265-011-9301-3. Epub 2011 Sep 3. Review.

PMID:
21892744
11.

Multi-casting approach for vascular networks in cellularized hydrogels.

Justin AW, Brooks RA, Markaki AE.

J R Soc Interface. 2016 Dec;13(125). pii: 20160768.

12.

A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues.

Tiruvannamalai-Annamalai R, Armant DR, Matthew HW.

PLoS One. 2014 Jan 20;9(1):e84287. doi: 10.1371/journal.pone.0084287. eCollection 2014 Jan 20.

13.

Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW.

Biofabrication. 2016 Jan 12;8(1):015007. doi: 10.1088/1758-5090/8/1/015007.

PMID:
26756962
14.

Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

Bell A, Kofron M, Nistor V.

Biofabrication. 2015 Sep 3;7(3):035007. doi: 10.1088/1758-5090/7/3/035007.

PMID:
26335389
15.

Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor.

Tocchio A, Tamplenizza M, Martello F, Gerges I, Rossi E, Argentiere S, Rodighiero S, Zhao W, Milani P, Lenardi C.

Biomaterials. 2015 Mar;45:124-31. doi: 10.1016/j.biomaterials.2014.12.031. Epub 2015 Jan 29.

PMID:
25662502
16.

Fusible core molding for the fabrication of branched, perfusable, three-dimensional microvessels for vascular tissue engineering.

Martin C, Sofla A, Zhang B, Nunes SS, Radisic M.

Int J Artif Organs. 2013 Mar;36(3):159-65. doi: 10.5301/IJAO.5000179. Epub 2013 Feb 13.

PMID:
23404637
17.

Fabrication and in vivo microanastomosis of vascularized tissue-engineered constructs.

Hooper RC, Hernandez KA, Boyko T, Harper A, Joyce J, Golas AR, Spector JA.

Tissue Eng Part A. 2014 Oct;20(19-20):2711-9. doi: 10.1089/ten.TEA.2013.0583. Epub 2014 May 19.

18.

A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks.

Li S, Liu YY, Liu LJ, Hu QX.

ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25096-103. doi: 10.1021/acsami.6b07725. Epub 2016 Sep 16.

PMID:
27607243
19.

Creating perfused functional vascular channels using 3D bio-printing technology.

Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, Vincent PA, Dai G.

Biomaterials. 2014 Sep;35(28):8092-102. doi: 10.1016/j.biomaterials.2014.05.083. Epub 2014 Jun 23.

20.

Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.

Osaki T, Kakegawa T, Kageyama T, Enomoto J, Nittami T, Fukuda J.

PLoS One. 2015 Apr 10;10(4):e0123735. doi: 10.1371/journal.pone.0123735. eCollection 2015 Apr 10.

Supplemental Content

Support Center