Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 130

1.

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.

Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, Toro E, Chen AA, Galie PA, Yu X, Chaturvedi R, Bhatia SN, Chen CS.

Nat Mater. 2012 Sep;11(9):768-74. doi: 10.1038/nmat3357. Epub 2012 Jul 1.

2.

Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.

Attalla R, Ling C, Selvaganapathy P.

Biomed Microdevices. 2016 Feb;18(1):17. doi: 10.1007/s10544-016-0042-6.

PMID:
26842949
3.

Tissue engineering: Perfusable vascular networks.

Forgacs G.

Nat Mater. 2012 Sep;11(9):746-7. doi: 10.1038/nmat3412. No abstract available.

PMID:
22918312
4.

Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network.

Pimentel C R, Ko SK, Caviglia C, Wolff A, Emnéus J, Keller SS, Dufva M.

Acta Biomater. 2018 Jan;65:174-184. doi: 10.1016/j.actbio.2017.10.047. Epub 2017 Nov 10.

PMID:
29102798
5.

Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.

Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH.

Lab Chip. 2014 Aug 7;14(15):2709-16. doi: 10.1039/c4lc00069b. Epub 2014 Jun 2.

PMID:
24887141
6.

Multi-casting approach for vascular networks in cellularized hydrogels.

Justin AW, Brooks RA, Markaki AE.

J R Soc Interface. 2016 Dec;13(125). pii: 20160768.

7.

The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds.

Zhao L, Lee VK, Yoo SS, Dai G, Intes X.

Biomaterials. 2012 Jul;33(21):5325-32. doi: 10.1016/j.biomaterials.2012.04.004. Epub 2012 Apr 22.

8.

An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

Xu H, Li H, Ke Q, Chang J.

ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8706-18. doi: 10.1021/acsami.5b00996. Epub 2015 Apr 15.

PMID:
25826222
9.

Geometric control of vascular networks to enhance engineered tissue integration and function.

Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD, Yang MT, Miller JS, Bhatia SN, Chen CS.

Proc Natl Acad Sci U S A. 2013 May 7;110(19):7586-91. doi: 10.1073/pnas.1217796110. Epub 2013 Apr 22.

10.

Micropatterning electrospun scaffolds to create intrinsic vascular networks.

Jeffries EM, Nakamura S, Lee KW, Clampffer J, Ijima H, Wang Y.

Macromol Biosci. 2014 Nov;14(11):1514-20. doi: 10.1002/mabi.201400306. Epub 2014 Aug 20.

PMID:
25142314
11.

Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts.

Huling J, Ko IK, Atala A, Yoo JJ.

Acta Biomater. 2016 Mar 1;32:190-197. doi: 10.1016/j.actbio.2016.01.005. Epub 2016 Jan 6.

PMID:
26772527
12.

A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks.

Li S, Liu YY, Liu LJ, Hu QX.

ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25096-103. doi: 10.1021/acsami.6b07725. Epub 2016 Sep 16.

PMID:
27607243
13.

A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues.

Tiruvannamalai-Annamalai R, Armant DR, Matthew HW.

PLoS One. 2014 Jan 20;9(1):e84287. doi: 10.1371/journal.pone.0084287. eCollection 2014.

14.

Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.

Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW.

Biofabrication. 2016 Jan 12;8(1):015007. doi: 10.1088/1758-5090/8/1/015007.

PMID:
26756962
15.

Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

Bell A, Kofron M, Nistor V.

Biofabrication. 2015 Sep 3;7(3):035007. doi: 10.1088/1758-5090/7/3/035007.

PMID:
26335389
16.

Biomaterials to prevascularize engineered tissues.

Tian L, George SC.

J Cardiovasc Transl Res. 2011 Oct;4(5):685-98. doi: 10.1007/s12265-011-9301-3. Epub 2011 Sep 3. Review.

PMID:
21892744
17.

Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor.

Tocchio A, Tamplenizza M, Martello F, Gerges I, Rossi E, Argentiere S, Rodighiero S, Zhao W, Milani P, Lenardi C.

Biomaterials. 2015 Mar;45:124-31. doi: 10.1016/j.biomaterials.2014.12.031. Epub 2015 Jan 29.

PMID:
25662502
18.

Fabrication and in vivo microanastomosis of vascularized tissue-engineered constructs.

Hooper RC, Hernandez KA, Boyko T, Harper A, Joyce J, Golas AR, Spector JA.

Tissue Eng Part A. 2014 Oct;20(19-20):2711-9. doi: 10.1089/ten.TEA.2013.0583. Epub 2014 May 19.

19.

A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.

Suntornnond R, Tan EYS, An J, Chua CK.

Sci Rep. 2017 Dec 4;7(1):16902. doi: 10.1038/s41598-017-17198-0.

20.

3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

Ball O, Nguyen BB, Placone JK, Fisher JP.

Ann Biomed Eng. 2016 Dec;44(12):3435-3445. Epub 2016 Jun 6.

Supplemental Content

Support Center