Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Quantitative genomics of 30 complex phenotypes in Wagyu x Angus F₁ progeny.

Zhang L, Michal JJ, O'Fallon JV, Pan Z, Gaskins CT, Reeves JJ, Busboom JR, Zhou X, Ding B, Dodson MV, Jiang Z.

Int J Biol Sci. 2012;8(6):838-58. doi: 10.7150/ijbs.4403. Epub 2012 Jun 12.

2.

The reverse cholesterol transport pathway improves understanding of genetic networks for fat deposition and muscle growth in beef cattle.

Daniels TF, Wu XL, Pan Z, Michal JJ, Wright RW Jr, Killinger KM, MacNeil MD, Jiang Z.

PLoS One. 2010 Dec 3;5(12):e15203. doi: 10.1371/journal.pone.0015203.

3.

Discovery of novel genetic networks associated with 19 economically important traits in beef cattle.

Jiang Z, Michal JJ, Chen J, Daniels TF, Kunej T, Garcia MD, Gaskins CT, Busboom JR, Alexander LJ, Wright RW Jr, Macneil MD.

Int J Biol Sci. 2009 Jul 29;5(6):528-42.

4.

Genetic variation in fatness and fatty acid composition of crossbred cattle.

Pitchford WS, Deland MP, Siebert BD, Malau-Aduli AE, Bottema CD.

J Anim Sci. 2002 Nov;80(11):2825-32.

5.

Growth, carcass characteristics, muscle conjugated linoleic acid (CLA) content, and response to intravenous glucose challenge in high percentage Wagyu, Wagyu x Limousin, and Limousin steers fed sunflower oil-containing diet.

Mir PS, Mir Z, Kubert PS, Gaskins CT, Martin EL, Dodson MV, Calles JA, Johnson KA, Busboom JR, Wood AJ, Pittenger GJ, Reeves JJ.

J Anim Sci. 2002 Nov;80(11):2996-3004.

6.

Genetic Variation in FABP4 and Evaluation of Its Effects on Beef Cattle Fat Content.

Goszczynski DE, Papaleo-Mazzucco J, Ripoli MV, Villarreal EL, Rogberg-Muñoz A, Mezzadra CA, Melucci LM, Giovambattista G.

Anim Biotechnol. 2017 Jul 3;28(3):211-219. doi: 10.1080/10495398.2016.1262868. Epub 2017 Jan 4.

PMID:
28051918
7.

The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

Jiang Z, Michal JJ, Wu XL, Pan Z, MacNeil MD.

Int J Biol Sci. 2011;7(5):659-63. Epub 2011 May 21.

8.
10.

Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid.

Berton MP, Fonseca LF, Gimenez DF, Utembergue BL, Cesar AS, Coutinho LL, de Lemos MV, Aboujaoude C, Pereira AS, Silva RM, Stafuzza NB, Feitosa FL, Chiaia HL, Olivieri BF, Peripolli E, Tonussi RL, Gordo DM, Espigolan R, Ferrinho AM, Mueller LF, de Albuquerque LG, de Oliveira HN, Duckett S, Baldi F.

BMC Genomics. 2016 Nov 25;17(1):972.

11.

Effects of selection for ultrasound intramuscular fat percentage in Angus bulls on carcass traits of progeny.

Sapp RL, Bertrand JK, Pringle TD, Wilson DE.

J Anim Sci. 2002 Aug;80(8):2017-22.

12.

Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle.

Casas E, White SN, Shackelford SD, Wheeler TL, Koohmaraie M, Bennett GL, Smith TP.

J Anim Sci. 2007 Nov;85(11):2807-14. Epub 2007 Aug 8.

13.

Effect of Wagyu- versus Angus-sired calves on feedlot performance, carcass characteristics, and tenderness.

Radunz AE, Loerch SC, Lowe GD, Fluharty FL, Zerby HN.

J Anim Sci. 2009 Sep;87(9):2971-6. doi: 10.2527/jas.2009-1914. Epub 2009 May 22.

14.

Relationship of fatty acid composition to intramuscular fat content in beef from crossbred Wagyu cattle.

Kazala EC, Lozeman FJ, Mir PS, Laroche A, Bailey DR, Weselake RJ.

J Anim Sci. 1999 Jul;77(7):1717-25.

15.

Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle.

Jiang Z, Michal JJ, Tobey DJ, Daniels TF, Rule DC, Macneil MD.

Int J Biol Sci. 2008 Sep 25;4(6):345-51.

16.

DNA sequence polymorphisms in a panel of eight candidate bovine imprinted genes and their association with performance traits in Irish Holstein-Friesian cattle.

Magee DA, Sikora KM, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Spillane C, MacHugh DE.

BMC Genet. 2010 Oct 13;11:93. doi: 10.1186/1471-2156-11-93.

17.

Bovine quantitative trait loci analysis for growth, carcass, and meat quality traits in an F2 population from a cross between Japanese Black and Limousin.

Abe T, Saburi J, Hasebe H, Nakagawa T, Kawamura T, Saito K, Nade T, Misumi S, Okumura T, Kuchida K, Hayashi T, Nakane S, Mitsuhasi T, Nirasawa K, Sugimoto Y, Kobayashi E.

J Anim Sci. 2008 Nov;86(11):2821-32. doi: 10.2527/jas.2007-0676. Epub 2008 Jul 3.

18.

DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits.

Sikora KM, Magee DA, Berkowicz EW, Berry DP, Howard DJ, Mullen MP, Evans RD, Machugh DE, Spillane C.

BMC Genet. 2011 Jan 7;12:4. doi: 10.1186/1471-2156-12-4.

19.

Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits.

Liu X, Usman T, Wang Y, Wang Z, Xu X, Wu M, Zhang Y, Zhang X, Li Q, Liu L, Shi W, Qin C, Geng F, Wang C, Tan R, Huang X, Liu A, Wu H, Tan S, Yu Y.

Asian-Australas J Anim Sci. 2015 Apr;28(4):467-75. doi: 10.5713/ajas.13.0837.

20.

Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle.

Matsuhashi T, Maruyama S, Uemoto Y, Kobayashi N, Mannen H, Abe T, Sakaguchi S, Kobayashi E.

J Anim Sci. 2011 Jan;89(1):12-22. doi: 10.2527/jas.2010-3121. Epub 2010 Sep 17.

Supplemental Content

Support Center