Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

Transport properties of armchair graphene nanoribbon junctions between graphene electrodes.

Motta C, Sánchez-Portal D, Trioni MI.

Phys Chem Chem Phys. 2012 Aug 14;14(30):10683-9. doi: 10.1039/c2cp40702g. Epub 2012 Jun 28.

PMID:
22743740
2.

Quantum transport through a graphene nanoribbon-superconductor junction.

Sun QF, Xie XC.

J Phys Condens Matter. 2009 Aug 26;21(34):344204. doi: 10.1088/0953-8984/21/34/344204. Epub 2009 Jul 27.

PMID:
21715779
3.

Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.

Li XF, Wang LL, Chen KQ, Luo Y.

J Phys Condens Matter. 2012 Mar 7;24(9):095801. doi: 10.1088/0953-8984/24/9/095801. Epub 2012 Feb 9.

PMID:
22317831
4.

Quantum transport in graphene nanonetworks.

Botello-Méndez AR, Cruz-Silva E, Romo-Herrera JM, López-Urías F, Terrones M, Sumpter BG, Terrones H, Charlier JC, Meunier V.

Nano Lett. 2011 Aug 10;11(8):3058-64. doi: 10.1021/nl2002268. Epub 2011 Jul 8.

PMID:
21696176
5.

Electronic structure and transport of a carbon chain between graphene nanoribbon leads.

Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM.

J Phys Condens Matter. 2011 Jan 19;23(2):025302. doi: 10.1088/0953-8984/23/2/025302. Epub 2010 Dec 13.

PMID:
21406839
6.

Transport properties of graphene nanoribbon-based molecular devices.

Ding Z, Jiang J, Xing H, Shu H, Dong R, Chen X, Lu W.

J Comput Chem. 2011 Mar;32(4):737-41. doi: 10.1002/jcc.21676. Epub 2010 Oct 5.

PMID:
20925088
7.

The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.

Ding Z, Jiang J, Xing H, Shu H, Huang Y, Chen X, Lu W.

J Comput Chem. 2011 Jun;32(8):1753-9. doi: 10.1002/jcc.21760. Epub 2011 Feb 23.

PMID:
21351109
8.

First-principles study of heat transport properties of graphene nanoribbons.

Tan ZW, Wang JS, Gan CK.

Nano Lett. 2011 Jan 12;11(1):214-9. doi: 10.1021/nl103508m. Epub 2010 Dec 15.

PMID:
21158401
9.

Combined effect of quantum size and disorder in a two-dimensional armchair graphene nanoribbon with s-wave pairing.

Qin ZJ, Zhang GP.

J Phys Condens Matter. 2011 Jul 27;23(29):295301. doi: 10.1088/0953-8984/23/29/295301. Epub 2011 Jun 23.

PMID:
21697585
10.

Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.

Botello-Méndez AR, Cruz-Silva E, López-Urías F, Sumpter BG, Meunier V, Terrones M, Terrones H.

ACS Nano. 2009 Nov 24;3(11):3606-12. doi: 10.1021/nn900614x.

PMID:
19863086
11.

Structural and electronic properties of graphene nanotube-nanoribbon hybrids.

Lee CH, Yang CK, Lin MF, Chang CP, Su WS.

Phys Chem Chem Phys. 2011 Mar 7;13(9):3925-31. doi: 10.1039/c0cp01569e. Epub 2011 Jan 6.

PMID:
21210053
12.

Polarization-induced switching effect in graphene nanoribbon edge-defect junction.

Yin G, Liang YY, Jiang F, Chen H, Wang P, Note R, Mizuseki H, Kawazoe Y.

J Chem Phys. 2009 Dec 21;131(23):234706. doi: 10.1063/1.3273312.

PMID:
20025341
13.

The computational design of junctions between carbon nanotubes and graphene nanoribbons.

Li YF, Li BR, Zhang HL.

Nanotechnology. 2009 Jun 3;20(22):225202. doi: 10.1088/0957-4484/20/22/225202. Epub 2009 May 12.

PMID:
19433869
14.

Chemical functionalization effects on armchair graphene nanoribbon transport.

López-Bezanilla A, Triozon F, Roche S.

Nano Lett. 2009 Jul;9(7):2537-41. doi: 10.1021/nl900561x.

PMID:
19505128
15.

Effect of disorder with long-range correlation on transport in graphene nanoribbon.

Zhang GP, Gao M, Zhang YY, Liu N, Qin ZJ, Shangguan MH.

J Phys Condens Matter. 2012 Jun 13;24(23):235303. doi: 10.1088/0953-8984/24/23/235303. Epub 2012 May 11.

PMID:
22576011
16.

Contact effects in graphene nanoribbon transistors.

Liang G, Neophytou N, Lundstrom MS, Nikonov DE.

Nano Lett. 2008 Jul;8(7):1819-24. doi: 10.1021/nl080255r. Epub 2008 Jun 18.

PMID:
18558785
17.

Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

Rahmani M, Ahmadi MT, Abadi HK, Saeidmanesh M, Akbari E, Ismail R.

Nanoscale Res Lett. 2013 Jan 30;8(1):55. doi: 10.1186/1556-276X-8-55.

18.

Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction.

Chen JC, Cheng SG, Shen SQ, Sun QF.

J Phys Condens Matter. 2010 Jan 27;22(3):035301. doi: 10.1088/0953-8984/22/3/035301. Epub 2009 Dec 21.

PMID:
21386283
19.

Persistent currents in a graphene ring with armchair edges.

Huang BL, Chang MC, Mou CY.

J Phys Condens Matter. 2012 Jun 20;24(24):245304. doi: 10.1088/0953-8984/24/24/245304. Epub 2012 May 23.

PMID:
22617621
20.

Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors.

Mao LF.

Nanotechnology. 2009 Jul 8;20(27):275203. doi: 10.1088/0957-4484/20/27/275203. Epub 2009 Jun 16.

PMID:
19528675

Supplemental Content

Support Center