Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 157

1.

Elucidation of the molecular envenomation strategy of the cone snail Conus geographus through transcriptome sequencing of its venom duct.

Hu H, Bandyopadhyay PK, Olivera BM, Yandell M.

BMC Genomics. 2012 Jun 28;13:284. doi: 10.1186/1471-2164-13-284.

2.

Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization.

Safavi-Hemami H, Hu H, Gorasia DG, Bandyopadhyay PK, Veith PD, Young ND, Reynolds EC, Yandell M, Olivera BM, Purcell AW.

Mol Cell Proteomics. 2014 Apr;13(4):938-53. doi: 10.1074/mcp.M113.031351. Epub 2014 Jan 29.

3.

Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail Conus catus.

Himaya SW, Jin AH, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ.

J Proteome Res. 2015 Oct 2;14(10):4372-81. doi: 10.1021/acs.jproteome.5b00630. Epub 2015 Sep 10.

PMID:
26322961
4.

Recruitment of glycosyl hydrolase proteins in a cone snail venomous arsenal: further insights into biomolecular features of Conus venoms.

Violette A, Leonardi A, Piquemal D, Terrat Y, Biass D, Dutertre S, Noguier F, Ducancel F, Stöcklin R, Križaj I, Favreau P.

Mar Drugs. 2012 Feb;10(2):258-80. doi: 10.3390/md10020258. Epub 2012 Jan 31.

5.

High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.

Terrat Y, Biass D, Dutertre S, Favreau P, Remm M, Stöcklin R, Piquemal D, Ducancel F.

Toxicon. 2012 Jan;59(1):34-46. doi: 10.1016/j.toxicon.2011.10.001. Epub 2011 Nov 6.

PMID:
22079299
6.

High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing.

Peng C, Yao G, Gao BM, Fan CX, Bian C, Wang J, Cao Y, Wen B, Zhu Y, Ruan Z, Zhao X, You X, Bai J, Li J, Lin Z, Zou S, Zhang X, Qiu Y, Chen J, Coon SL, Yang J, Chen JS, Shi Q.

Gigascience. 2016 Apr 14;5:17. doi: 10.1186/s13742-016-0122-9. eCollection 2016.

7.

Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome.

Lluisma AO, Milash BA, Moore B, Olivera BM, Bandyopadhyay PK.

Mar Genomics. 2012 Mar;5:43-51. doi: 10.1016/j.margen.2011.09.002. Epub 2012 Jan 9.

8.

Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.

Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ.

Mol Cell Proteomics. 2013 Feb;12(2):312-29. doi: 10.1074/mcp.M112.021469. Epub 2012 Nov 14.

9.

Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies.

Lavergne V, Dutertre S, Jin AH, Lewis RJ, Taft RJ, Alewood PF.

BMC Genomics. 2013 Oct 16;14:708. doi: 10.1186/1471-2164-14-708.

10.

Embryonic toxin expression in the cone snail Conus victoriae: primed to kill or divergent function?

Safavi-Hemami H, Siero WA, Kuang Z, Williamson NA, Karas JA, Page LR, MacMillan D, Callaghan B, Kompella SN, Adams DJ, Norton RS, Purcell AW.

J Biol Chem. 2011 Jun 24;286(25):22546-57. doi: 10.1074/jbc.M110.217703. Epub 2011 Apr 19.

11.

Transcriptome and proteome of Conus planorbis identify the nicotinic receptors as primary target for the defensive venom.

Jin AH, Vetter I, Himaya SW, Alewood PF, Lewis RJ, Dutertre S.

Proteomics. 2015 Dec;15(23-24):4030-40. doi: 10.1002/pmic.201500220. Epub 2015 Nov 17.

PMID:
26506909
12.

High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms.

Barghi N, Concepcion GP, Olivera BM, Lluisma AO.

Mar Biotechnol (NY). 2015 Feb;17(1):81-98. doi: 10.1007/s10126-014-9595-7. Epub 2014 Aug 13.

13.

Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach.

Violette A, Biass D, Dutertre S, Koua D, Piquemal D, Pierrat F, Stöcklin R, Favreau P.

J Proteomics. 2012 Sep 18;75(17):5215-25. doi: 10.1016/j.jprot.2012.06.001. Epub 2012 Jun 13.

PMID:
22705119
14.

Characterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus.

Ul-Hasan S, Burgess DM, Gajewiak J, Li Q, Hu H, Yandell M, Olivera BM, Bandyopadhyay PK.

Toxicon. 2013 Nov;74:215-24. doi: 10.1016/j.toxicon.2013.08.054. Epub 2013 Aug 29.

15.

Conus consors snail venom proteomics proposes functions, pathways, and novel families involved in its venomic system.

Leonardi A, Biass D, Kordiš D, Stöcklin R, Favreau P, Križaj I.

J Proteome Res. 2012 Oct 5;11(10):5046-58. doi: 10.1021/pr3006155. Epub 2012 Sep 12.

PMID:
22928724
16.

Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity.

Jin AH, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis RJ, Alewood PF.

Mol Cell Proteomics. 2013 Dec;12(12):3824-33. doi: 10.1074/mcp.M113.030353. Epub 2013 Sep 16.

17.

High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system.

Safavi-Hemami H, Möller C, Marí F, Purcell AW.

J Proteomics. 2013 Oct 8;91:97-105. doi: 10.1016/j.jprot.2013.07.007. Epub 2013 Jul 19.

PMID:
23872086
18.

Identification of six novel T-1 conotoxins from Conus pulicarius by molecular cloning.

Peng C, Wu X, Han Y, Yuan D, Chi C, Wang C.

Peptides. 2007 Nov;28(11):2116-24. Epub 2007 Sep 4.

PMID:
17933431
19.

Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes.

Barghi N, Concepcion GP, Olivera BM, Lluisma AO.

Genome Biol Evol. 2015 Jun 4;7(6):1797-814. doi: 10.1093/gbe/evv109.

20.

Characterization of the Conus bullatus genome and its venom-duct transcriptome.

Hu H, Bandyopadhyay PK, Olivera BM, Yandell M.

BMC Genomics. 2011 Jan 25;12:60. doi: 10.1186/1471-2164-12-60.

Supplemental Content

Support Center