Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Aspartate-histidine interaction in the retinal schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum.

Balashov SP, Petrovskaya LE, Lukashev EP, Imasheva ES, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK.

Biochemistry. 2012 Jul 24;51(29):5748-62. doi: 10.1021/bi300409m. Epub 2012 Jul 10.

2.

ESR - a retinal protein with unusual properties from Exiguobacterium sibiricum.

Petrovskaya LE, Balashov SP, Lukashev EP, Imasheva ES, Gushchin IY, Dioumaev AK, Rubin AB, Dolgikh DA, Gordeliy VI, Lanyi JK, Kirpichnikov MP.

Biochemistry (Mosc). 2015 Jun;80(6):688-700. doi: 10.1134/S000629791506005X. Review.

3.

Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin.

Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR.

Biophys J. 1999 Nov;77(5):2750-63.

4.

Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum.

Balashov SP, Petrovskaya LE, Imasheva ES, Lukashev EP, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK.

J Biol Chem. 2013 Jul 19;288(29):21254-65. doi: 10.1074/jbc.M113.465138. Epub 2013 May 21.

5.

Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.

Otto H, Marti T, Holz M, Mogi T, Stern LJ, Engel F, Khorana HG, Heyn MP.

Proc Natl Acad Sci U S A. 1990 Feb;87(3):1018-22.

6.

Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base.

Needleman R, Chang M, Ni B, Váró G, Fornés J, White SH, Lanyi JK.

J Biol Chem. 1991 Jun 25;266(18):11478-84.

7.

Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

Balashov SP, Imasheva ES, Dioumaev AK, Wang JM, Jung KH, Lanyi JK.

Biochemistry. 2014 Dec 9;53(48):7549-61. doi: 10.1021/bi501064n. Epub 2014 Nov 24.

8.

Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base.

Subramaniam S, Greenhalgh DA, Khorana HG.

J Biol Chem. 1992 Dec 25;267(36):25730-3.

9.

pH-dependent transitions in xanthorhodopsin.

Imasheva ES, Balashov SP, Wang JM, Lanyi JK.

Photochem Photobiol. 2006 Nov-Dec;82(6):1406-13.

10.

Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum.

Siletsky SA, Mamedov MD, Lukashev EP, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Petrovskaya LE.

Biochim Biophys Acta. 2016 Nov;1857(11):1741-1750. doi: 10.1016/j.bbabio.2016.08.004. Epub 2016 Aug 12.

PMID:
27528561
11.

Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.

Dioumaev AK, Wang JM, Bálint Z, Váró G, Lanyi JK.

Biochemistry. 2003 Jun 3;42(21):6582-7.

PMID:
12767242
12.

FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.

Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ.

Biochemistry. 2000 Mar 21;39(11):2823-30.

PMID:
10715101
13.

His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps.

Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL.

J Biol Chem. 2009 Jan 30;284(5):2836-43. doi: 10.1074/jbc.M803792200. Epub 2008 Nov 17.

14.

Proteorhodopsin is a light-driven proton pump with variable vectoriality.

Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E.

J Mol Biol. 2002 Aug 30;321(5):821-38.

PMID:
12206764
15.
16.

Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle.

Balashov SP, Govindjee R, Kono M, Imasheva E, Lukashev E, Ebrey TG, Crouch RK, Menick DR, Feng Y.

Biochemistry. 1993 Oct 5;32(39):10331-43.

PMID:
8399176
17.

Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins.

Druckmann S, Ottolenghi M, Rousso I, Friedman N, Sheves M.

Biochemistry. 1995 Sep 19;34(37):12066-74.

PMID:
7547945
18.

Photocycle of Exiguobacterium sibiricum rhodopsin characterized by low-temperature trapping in the IR and time-resolved studies in the visible.

Dioumaev AK, Petrovskaya LE, Wang JM, Balashov SP, Dolgikh DA, Kirpichnikov MP, Lanyi JK.

J Phys Chem B. 2013 Jun 20;117(24):7235-53. doi: 10.1021/jp402430w. Epub 2013 Jun 10.

19.

Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump.

Petrovskaya LE, Lukashev EP, Chupin VV, Sychev SV, Lyukmanova EN, Kryukova EA, Ziganshin RH, Spirina EV, Rivkina EM, Khatypov RA, Erokhina LG, Gilichinsky DA, Shuvalov VA, Kirpichnikov MP.

FEBS Lett. 2010 Oct 8;584(19):4193-6. doi: 10.1016/j.febslet.2010.09.005. Epub 2010 Sep 8.

20.

Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.

Lu M, Balashov SP, Ebrey TG, Chen N, Chen Y, Menick DR, Crouch RK.

Biochemistry. 2000 Mar 7;39(9):2325-31.

PMID:
10694399

Supplemental Content

Support Center