Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 152

1.

Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern.

Rank KC, Chen CJ, Cope J, Porche K, Hoenger A, Gilbert SP, Rayment I.

J Cell Biol. 2012 Jun 25;197(7):957-70. doi: 10.1083/jcb.201201132.

2.

The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke.

Chen CJ, Porche K, Rayment I, Gilbert SP.

J Biol Chem. 2012 Oct 26;287(44):36673-82. doi: 10.1074/jbc.M112.395590.

3.

Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site.

Allingham JS, Sproul LR, Rayment I, Gilbert SP.

Cell. 2007 Mar 23;128(6):1161-72.

4.

Common mechanistic themes for the powerstroke of kinesin-14 motors.

Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A.

J Struct Biol. 2013 Nov;184(2):335-44. doi: 10.1016/j.jsb.2013.09.020.

5.

Kinesin Kar3 and Vik1 go head to head.

Woehlke G, Schliwa M.

Cell. 2007 Mar 23;128(6):1033-4.

6.

Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3.

Mackey AT, Sproul LR, Sontag CA, Satterwhite LL, Correia JJ, Gilbert SP.

J Biol Chem. 2004 Dec 3;279(49):51354-61.

7.

Neck rotation and neck mimic docking in the noncatalytic Kar3-associated protein Vik1.

Duan D, Jia Z, Joshi M, Brunton J, Chan M, Drew D, Davis D, Allingham JS.

J Biol Chem. 2012 Nov 23;287(48):40292-301. doi: 10.1074/jbc.M112.416529.

8.

Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules.

Cope J, Rank KC, Gilbert SP, Rayment I, Hoenger A.

PLoS One. 2013;8(1):e53792. doi: 10.1371/journal.pone.0053792.

9.

Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.

Zhang P, Dai W, Hahn J, Gilbert SP.

Proc Natl Acad Sci U S A. 2015 May 19;112(20):6359-64. doi: 10.1073/pnas.1505531112.

10.

Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the C terminus of the Vik1 subunit.

Joshi M, Duan D, Drew D, Jia Z, Davis D, Campbell RL, Allingham JS.

J Biol Chem. 2013 Dec 27;288(52):36957-70. doi: 10.1074/jbc.M113.492264.

11.

Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends.

Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP.

Curr Biol. 2005 Aug 9;15(15):1420-7.

12.

Cryo-electron tomography of microtubule-kinesin motor complexes.

Cope J, Gilbert S, Rayment I, Mastronarde D, Hoenger A.

J Struct Biol. 2010 May;170(2):257-65. doi: 10.1016/j.jsb.2009.12.004.

13.

X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution.

Gulick AM, Song H, Endow SA, Rayment I.

Biochemistry. 1998 Feb 17;37(7):1769-76.

PMID:
9485302
14.
15.

Kar3 interaction with Cik1 alters motor structure and function.

Chu HM, Yun M, Anderson DE, Sage H, Park HW, Endow SA.

EMBO J. 2005 Sep 21;24(18):3214-23.

16.

A new look at the microtubule binding patterns of dimeric kinesins.

Hoenger A, Thormählen M, Diaz-Avalos R, Doerhoefer M, Goldie KN, Müller J, Mandelkow E.

J Mol Biol. 2000 Apr 14;297(5):1087-103.

PMID:
10764575
17.

Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant.

Song H, Endow SA.

Nature. 1998 Dec 10;396(6711):587-90.

PMID:
9859995
18.

Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3.

Mieck C, Molodtsov MI, Drzewicka K, van der Vaart B, Litos G, Schmauss G, Vaziri A, Westermann S.

Elife. 2015 Jan 27;4. doi: 10.7554/eLife.04489.

19.
20.

Binding sites on microtubules of kinesin motors of the same or opposite polarity.

Song H, Endow SA.

Biochemistry. 1996 Aug 27;35(34):11203-9.

PMID:
8780525
Items per page

Supplemental Content

Support Center