Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 76

1.

Proof of concept for claudin-targeted drug development.

Suzuki H, Kondoh M, Takahashi A, Yagi K.

Ann N Y Acad Sci. 2012 Jul;1258:65-70. doi: 10.1111/j.1749-6632.2012.06503.x. Review.

PMID:
22731717
2.

Creation and biochemical analysis of a broad-specific claudin binder.

Takahashi A, Saito Y, Kondoh M, Matsushita K, Krug SM, Suzuki H, Tsujino H, Li X, Aoyama H, Matsuhisa K, Uno T, Fromm M, Hamakubo T, Yagi K.

Biomaterials. 2012 Apr;33(12):3464-74. doi: 10.1016/j.biomaterials.2012.01.017.

PMID:
22317861
3.

Recent advances in claudin-targeting technology.

Nagase S, Doyama R, Yagi K, Kondoh M.

Biol Pharm Bull. 2013;36(5):708-14. Review.

4.

[Non-invasive drug delivery system with the claudin binder].

Takahashi A, Kondoh M, Yagi K.

Yakugaku Zasshi. 2011;131(11):1583-7. Review. Japanese.

5.

Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer.

Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N.

Prostate. 2012 Mar;72(4):351-60. doi: 10.1002/pros.21436.

PMID:
21656836
6.

The application of an alanine-substituted mutant of the C-terminal fragment of Clostridium perfringens enterotoxin as a mucosal vaccine in mice.

Suzuki H, Kondoh M, Kakutani H, Yamane S, Uchida H, Hamakubo T, Yagi K.

Biomaterials. 2012 Jan;33(1):317-24. doi: 10.1016/j.biomaterials.2011.09.048.

PMID:
21983135
7.

Comparison of mucosal absorption-enhancing activity between a claudin-3/-4 binder and a broadly specific claudin binder.

Matsuhisa K, Kondoh M, Suzuki H, Yagi K.

Biochem Biophys Res Commun. 2012 Jun 29;423(2):229-33. doi: 10.1016/j.bbrc.2012.05.060.

PMID:
22659740
8.

On the interaction of Clostridium perfringens enterotoxin with claudins.

Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J.

Toxins (Basel). 2010 Jun;2(6):1336-56. doi: 10.3390/toxins2061336. Review.

9.

Protein kinase Cα inhibitor enhances the sensitivity of human pancreatic cancer HPAC cells to Clostridium perfringens enterotoxin via claudin-4.

Kyuno D, Kojima T, Ito T, Yamaguchi H, Tsujiwaki M, Takasawa A, Murata M, Tanaka S, Hirata K, Sawada N.

Cell Tissue Res. 2011 Dec;346(3):369-81. doi: 10.1007/s00441-011-1287-2.

PMID:
22160590
10.

A toxicological evaluation of a claudin modulator, the C-terminal fragment of Clostridium perfringens enterotoxin, in mice.

Suzuki H, Kondoh M, Li X, Takahashi A, Matsuhisa K, Matsushita K, Kakamu Y, Yamane S, Kodaka M, Isoda K, Yagi K.

Pharmazie. 2011 Jul;66(7):543-6.

PMID:
21812332
11.

[The new era of epithelium-targeted drug development].

Shimizu Y, Nagase S, Yagi K, Kondoh M.

Yakugaku Zasshi. 2014;134(5):641-5. Review. Japanese.

12.

Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins.

Veshnyakova A, Piontek J, Protze J, Waziri N, Heise I, Krause G.

J Biol Chem. 2012 Jan 13;287(3):1698-708. doi: 10.1074/jbc.M111.312165.

13.

Specificity of interaction between clostridium perfringens enterotoxin and claudin-family tight junction proteins.

Mitchell LA, Koval M.

Toxins (Basel). 2010 Jul;2(7):1595-611. doi: 10.3390/toxins2071595. Review.

14.

Preparation of a claudin-targeting molecule using a C-terminal fragment of Clostridium perfringens enterotoxin.

Ebihara C, Kondoh M, Hasuike N, Harada M, Mizuguchi H, Horiguchi Y, Fujii M, Watanabe Y.

J Pharmacol Exp Ther. 2006 Jan;316(1):255-60.

15.

Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction.

Kimura J, Abe H, Kamitani S, Toshima H, Fukui A, Miyake M, Kamata Y, Sugita-Konishi Y, Yamamoto S, Horiguchi Y.

J Biol Chem. 2010 Jan 1;285(1):401-8. doi: 10.1074/jbc.M109.051417.

16.

Effects of Clostridium perfringens enterotoxin via claudin-4 on normal human pancreatic duct epithelial cells and cancer cells.

Yamaguchi H, Kojima T, Ito T, Kyuno D, Kimura Y, Imamura M, Hirata K, Sawada N.

Cell Mol Biol Lett. 2011 Sep;16(3):385-97. doi: 10.2478/s11658-011-0014-z.

PMID:
21573709
17.

Claudin-4 as therapeutic target in cancer.

Neesse A, Griesmann H, Gress TM, Michl P.

Arch Biochem Biophys. 2012 Aug 1;524(1):64-70. doi: 10.1016/j.abb.2012.01.009. Review.

PMID:
22286027
18.

Mutated C-terminal fragments of Clostridium perfringens enterotoxin have increased affinity to claudin-4 and reversibly modulate tight junctions in vitro.

Takahashi A, Kondoh M, Uchida H, Kakamu Y, Hamakubo T, Yagi K.

Biochem Biophys Res Commun. 2011 Jul 8;410(3):466-70. doi: 10.1016/j.bbrc.2011.05.161.

PMID:
21672529
19.

Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors.

Walther W, Petkov S, Kuvardina ON, Aumann J, Kobelt D, Fichtner I, Lemm M, Piontek J, Blasig IE, Stein U, Schlag PM.

Gene Ther. 2012 May;19(5):494-503. doi: 10.1038/gt.2011.136.

PMID:
21975465
20.

Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin.

Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, Tsukita S, Leder G, Adler G, Gress TM.

Gastroenterology. 2001 Sep;121(3):678-84.

PMID:
11522752
Items per page

Supplemental Content

Support Center