Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 198

1.

Role of mprF1 and mprF2 in the pathogenicity of Enterococcus faecalis.

Bao Y, Sakinc T, Laverde D, Wobser D, Benachour A, Theilacker C, Hartke A, Huebner J.

PLoS One. 2012;7(6):e38458. doi: 10.1371/journal.pone.0038458. Epub 2012 Jun 18.

2.

Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine.

Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA.

J Exp Med. 2001 May 7;193(9):1067-76.

3.

RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors.

Roy H, Ibba M.

Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4667-72. doi: 10.1073/pnas.0800006105. Epub 2008 Feb 27.

4.

Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids.

Ernst CM, Peschel A.

Mol Microbiol. 2011 Apr;80(2):290-9. doi: 10.1111/j.1365-2958.2011.07576.x. Epub 2011 Mar 1. Review.

5.
6.
7.

[The relationship between antibiotic resistance and virulence factors in urinary Enterococcus isolates].

Baylan O, Nazik H, Bektöre B, Citil BE, Turan D, Ongen B, Ozyurt M, Açıkel CH, Haznedaroğlu T.

Mikrobiyol Bul. 2011 Jul;45(3):430-45. Turkish.

PMID:
21935776
8.

Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors.

Rigottier-Gois L, Alberti A, Houel A, Taly JF, Palcy P, Manson J, Pinto D, Matos RC, Carrilero L, Montero N, Tariq M, Karsens H, Repp C, Kropec A, Budin-Verneuil A, Benachour A, Sauvageot N, Bizzini A, Gilmore MS, Bessières P, Kok J, Huebner J, Lopes F, Gonzalez-Zorn B, Hartke A, Serror P.

PLoS One. 2011;6(12):e29023. doi: 10.1371/journal.pone.0029023. Epub 2011 Dec 15.

9.

Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis.

Theilacker C, Sanchez-Carballo P, Toma I, Fabretti F, Sava I, Kropec A, Holst O, Huebner J.

Mol Microbiol. 2009 Feb;71(4):1055-69. doi: 10.1111/j.1365-2958.2009.06587.x.

10.

The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence.

Reffuveille F, Serror P, Chevalier S, Budin-Verneuil A, Ladjouzi R, Bernay B, Auffray Y, Rincé A.

Microbiology. 2012 Mar;158(Pt 3):816-25. doi: 10.1099/mic.0.055319-0. Epub 2011 Dec 1.

PMID:
22135097
11.

The lipid-modifying multiple peptide resistance factor is an oligomer consisting of distinct interacting synthase and flippase subunits.

Ernst CM, Kuhn S, Slavetinsky CJ, Krismer B, Heilbronner S, Gekeler C, Kraus D, Wagner S, Peschel A.

MBio. 2015 Jan 27;6(1). pii: e02340-14. doi: 10.1128/mBio.02340-14.

12.

Surface protein EF3314 contributes to virulence properties of Enterococcus faecalis.

Creti R, Fabretti F, Koch S, Huebner J, Garsin DA, Baldassarri L, Montanaro L, Arciola CR.

Int J Artif Organs. 2009 Sep;32(9):611-20.

13.

Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation.

Theilacker C, Sava I, Sanchez-Carballo P, Bao Y, Kropec A, Grohmann E, Holst O, Huebner J.

BMC Microbiol. 2011 Apr 6;11:67. doi: 10.1186/1471-2180-11-67.

14.

Detection of virulence factors in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolates from a Tunisian hospital.

Klibi N, Ben Slama K, Sáenz Y, Masmoudi A, Zanetti S, Sechi LA, Boudabous A, Torres C.

Can J Microbiol. 2007 Mar;53(3):372-9.

PMID:
17538646
15.

Molecular screening of virulence genes in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical specimens in Northwest Iran.

Hasani A, Sharifi Y, Ghotaslou R, Naghili B, Hasani A, Aghazadeh M, Milani M, Bazmani A.

Indian J Med Microbiol. 2012 Apr-Jun;30(2):175-81. doi: 10.4103/0255-0857.96687.

16.

Enterococcus faecalis of human and poultry origin share virulence genes supporting the zoonotic potential of E. faecalis.

Olsen RH, Schønheyder HC, Christensen H, Bisgaard M.

Zoonoses Public Health. 2012 Jun;59(4):256-63. doi: 10.1111/j.1863-2378.2011.01442.x. Epub 2011 Nov 28.

PMID:
22122842
17.

The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection.

Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F, Normark S, Henriques-Normark B, Caparon MG, Hultgren SJ.

MBio. 2012 Jul 24;3(4):e00177-12. doi: 10.1128/mBio.00177-12. Print 2012.

18.

A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice.

Hufnagel M, Koch S, Creti R, Baldassarri L, Huebner J.

J Infect Dis. 2004 Feb 1;189(3):420-30. Epub 2004 Jan 20.

PMID:
14745699
19.

Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis.

Rashid R, Cazenave-Gassiot A, Gao IH, Nair ZJ, Kumar JK, Gao L, Kline KA, Wenk MR.

PLoS One. 2017 Apr 19;12(4):e0175886. doi: 10.1371/journal.pone.0175886. eCollection 2017.

20.

Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides.

Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J.

Infect Immun. 2006 Jul;74(7):4164-71.

Supplemental Content

Support Center