Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Decreased lactate concentration and glycolytic enzyme expression reflect inhibition of mTOR signal transduction pathway in B-cell lymphoma.

Lee SC, Marzec M, Liu X, Wehrli S, Kantekure K, Ragunath PN, Nelson DS, Delikatny EJ, Glickson JD, Wasik MA.

NMR Biomed. 2013 Jan;26(1):106-14. doi: 10.1002/nbm.2825. Epub 2012 Jun 18.

2.

Inhibition of mTOR pathway sensitizes acute myeloid leukemia cells to aurora inhibitors by suppression of glycolytic metabolism.

Liu LL, Long ZJ, Wang LX, Zheng FM, Fang ZG, Yan M, Xu DF, Chen JJ, Wang SW, Lin DJ, Liu Q.

Mol Cancer Res. 2013 Nov;11(11):1326-36. doi: 10.1158/1541-7786.MCR-13-0172. Epub 2013 Sep 5.

3.

The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma.

Levy AG, Zage PE, Akers LJ, Ghisoli ML, Chen Z, Fang W, Kannan S, Graham T, Zeng L, Franklin AR, Huang P, Zweidler-McKay PA.

Invest New Drugs. 2012 Feb;30(1):191-9. doi: 10.1007/s10637-010-9551-y. Epub 2010 Oct 5.

4.

Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.

Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J.

PLoS One. 2015 Jul 15;10(7):e0132880. doi: 10.1371/journal.pone.0132880. eCollection 2015.

5.

Changes in tumor metabolism as readout for Mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma.

Wei LH, Su H, Hildebrandt IJ, Phelps ME, Czernin J, Weber WA.

Clin Cancer Res. 2008 Jun 1;14(11):3416-26. doi: 10.1158/1078-0432.CCR-07-1824.

6.

Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells.

Xu RH, Pelicano H, Zhang H, Giles FJ, Keating MJ, Huang P.

Leukemia. 2005 Dec;19(12):2153-8.

PMID:
16193082
7.

Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease--a combined tissue microarray, in vitro and in vivo study.

Márk Á, Hajdu M, Váradi Z, Sticz TB, Nagy N, Csomor J, Berczi L, Varga V, Csóka M, Kopper L, Sebestyén A.

BMC Cancer. 2013 May 22;13:250. doi: 10.1186/1471-2407-13-250.

9.

Mammalian target of rapamycin controls glucose consumption and redox balance in human Sertoli cells.

Jesus TT, Oliveira PF, Silva J, Barros A, Ferreira R, Sousa M, Cheng CY, Silva BM, Alves MG.

Fertil Steril. 2016 Mar;105(3):825-33.e3. doi: 10.1016/j.fertnstert.2015.11.032. Epub 2015 Dec 14.

10.

Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy.

Shi WY, Xiao D, Wang L, Dong LH, Yan ZX, Shen ZX, Chen SJ, Chen Y, Zhao WL.

Cell Death Dis. 2012 Mar 1;3:e275. doi: 10.1038/cddis.2012.13.

11.

Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling.

Allen E, Miéville P, Warren CM, Saghafinia S, Li L, Peng MW, Hanahan D.

Cell Rep. 2016 May 10;15(6):1144-60. doi: 10.1016/j.celrep.2016.04.029. Epub 2016 Apr 28.

12.

[Significance of mTOR (mammalian target of rapamycin) activity in human lymphomas].

Márk Á.

Magy Onkol. 2014 Jun;58(2):143-8. Epub 2013 Dec 5. Hungarian.

13.

Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.

Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN, Bucki R, Wlodarski P, Wasik MA.

Oncogene. 2007 Aug 16;26(38):5606-14. Epub 2007 Mar 12.

PMID:
17353907
14.

Enhanced antitumor activity of 3-bromopyruvate in combination with rapamycin in vivo and in vitro.

Zhang Q, Pan J, Lubet RA, Komas SM, Kalyanaraman B, Wang Y, You M.

Cancer Prev Res (Phila). 2015 Apr;8(4):318-26. doi: 10.1158/1940-6207.CAPR-14-0142. Epub 2015 Feb 2.

15.

NFκB up-regulation of glucose transporter 3 is essential for hyperactive mammalian target of rapamycin-induced aerobic glycolysis and tumor growth.

Zha X, Hu Z, Ji S, Jin F, Jiang K, Li C, Zhao P, Tu Z, Chen X, Di L, Zhou H, Zhang H.

Cancer Lett. 2015 Apr 1;359(1):97-106. doi: 10.1016/j.canlet.2015.01.001. Epub 2015 Jan 8.

PMID:
25578782
16.

In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer.

Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA.

Mol Cancer Ther. 2011 Aug;10(8):1440-9. doi: 10.1158/1535-7163.MCT-11-0240. Epub 2011 Jun 1.

17.
18.

Effects of combined inhibition of MEK and mTOR on downstream signaling and tumor growth in pancreatic cancer xenograft models.

Chang Q, Chen E, Hedley DW.

Cancer Biol Ther. 2009 Oct;8(20):1893-901. Epub 2009 Oct 6.

PMID:
20009539
19.

Inhibition of Aerobic Glycolysis Represses Akt/mTOR/HIF-1α Axis and Restores Tamoxifen Sensitivity in Antiestrogen-Resistant Breast Cancer Cells.

Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J, Chang M, Park JH.

PLoS One. 2015 Jul 9;10(7):e0132285. doi: 10.1371/journal.pone.0132285. eCollection 2015.

Supplemental Content

Support Center