Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.

Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P.

J Biol Chem. 2012 Jul 27;287(31):26400-8. doi: 10.1074/jbc.M112.380998. Epub 2012 Jun 14.

2.

Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ.

Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P.

J Biol Chem. 2012 Sep 28;287(40):33836-46. Epub 2012 Aug 2.

3.

NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.

Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM.

Biochemistry. 2012 Jul 10;51(27):5506-20. Epub 2012 Jun 28.

4.

Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis.

Pustovalova Y, Magalhães MT, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM.

Biochemistry. 2016 Apr 5;55(13):2043-53. doi: 10.1021/acs.biochem.5b01282. Epub 2016 Mar 24.

5.

Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

J Biol Chem. 2012 Sep 28;287(40):33847-52. Epub 2012 Aug 2.

6.

Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.

Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M.

J Biol Chem. 2010 Apr 16;285(16):12299-307. doi: 10.1074/jbc.M109.092403. Epub 2010 Feb 17.

7.

NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.

Pustovalova Y, Maciejewski MW, Korzhnev DM.

J Mol Biol. 2013 Sep 9;425(17):3091-105. doi: 10.1016/j.jmb.2013.05.029. Epub 2013 Jun 7.

PMID:
23747975
8.

XRCC1 interaction with the REV1 C-terminal domain suggests a role in post replication repair.

Gabel SA, DeRose EF, London RE.

DNA Repair (Amst). 2013 Dec;12(12):1105-13.

PMID:
24409475
9.

Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.

Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC.

EMBO J. 2003 Dec 15;22(24):6621-30.

10.

The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1.

Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JC, Washington MT.

J Biol Chem. 2016 Apr 15;291(16):8735-44. doi: 10.1074/jbc.M115.697938. Epub 2016 Feb 22.

11.

Structural insights into the assembly of human translesion polymerase complexes.

Xie W, Yang X, Xu M, Jiang T.

Protein Cell. 2012 Nov;3(11):864-74. doi: 10.1007/s13238-012-2102-x. Epub 2012 Nov 10.

12.

The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site.

Hashimoto K, Cho Y, Yang IY, Akagi J, Ohashi E, Tateishi S, de Wind N, Hanaoka F, Ohmori H, Moriya M.

J Biol Chem. 2012 Mar 16;287(12):9613-22. doi: 10.1074/jbc.M111.331728. Epub 2012 Feb 2.

13.

The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ.

Pustovalova Y, Bezsonova I, Korzhnev DM.

FEBS Lett. 2012 Sep 21;586(19):3051-6. doi: 10.1016/j.febslet.2012.07.021. Epub 2012 Jul 22.

14.

Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.

Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H.

Genes Cells. 2009 Feb;14(2):101-11. doi: 10.1111/j.1365-2443.2008.01255.x. Epub 2009 Jan 6.

15.

Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.

Suzuki M, Kino K, Kawada T, Oyoshi T, Morikawa M, Kobayashi T, Miyazawa H.

J Biochem. 2016 Mar;159(3):323-9. doi: 10.1093/jb/mvv103. Epub 2015 Oct 21.

16.

Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1.

Choi JY, Lim S, Kim EJ, Jo A, Guengerich FP.

J Mol Biol. 2010 Nov 19;404(1):34-44. doi: 10.1016/j.jmb.2010.09.015. Epub 2010 Oct 1.

17.

Roles of mutagenic translesion synthesis in mammalian genome stability, health and disease.

Jansen JG, Tsaalbi-Shtylik A, de Wind N.

DNA Repair (Amst). 2015 May;29:56-64. doi: 10.1016/j.dnarep.2015.01.001. Epub 2015 Jan 21. Review.

PMID:
25655219
18.

Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.

Bomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P.

Mol Cell. 2010 Feb 12;37(3):408-17. doi: 10.1016/j.molcel.2009.12.038.

19.

Complex formation of yeast Rev1 with DNA polymerase eta.

Acharya N, Haracska L, Prakash S, Prakash L.

Mol Cell Biol. 2007 Dec;27(23):8401-8. Epub 2007 Sep 17.

20.

Crystallization and X-ray diffraction analysis of the ternary complex of the C-terminal domain of human REV1 in complex with REV7 bound to a REV3 fragment involved in translesion DNA synthesis.

Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Aug 1;68(Pt 8):962-4. doi: 10.1107/S1744309112032435. Epub 2012 Jul 27.

Supplemental Content

Support Center