Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Progressive structuring of a branched antimicrobial peptide on the path to the inner membrane target.

Bai Y, Liu S, Li J, Lakshminarayanan R, Sarawathi P, Tang C, Ho D, Verma C, Beuerman RW, Pervushin K.

J Biol Chem. 2012 Aug 3;287(32):26606-17. doi: 10.1074/jbc.M112.363259. Epub 2012 Jun 14.

2.

Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization.

Domadia PN, Bhunia A, Ramamoorthy A, Bhattacharjya S.

J Am Chem Soc. 2010 Dec 29;132(51):18417-28. doi: 10.1021/ja1083255. Epub 2010 Dec 3.

PMID:
21128620
3.

The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization.

Shang D, Zhang Q, Dong W, Liang H, Bi X.

Acta Biomater. 2016 Mar;33:153-65. doi: 10.1016/j.actbio.2016.01.019. Epub 2016 Jan 21.

PMID:
26804205
4.

Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control.

Datta A, Bhattacharyya D, Singh S, Ghosh A, Schmidtchen A, Malmsten M, Bhunia A.

J Biol Chem. 2016 Jun 17;291(25):13301-17. doi: 10.1074/jbc.M116.719575. Epub 2016 May 2.

5.
6.

Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability.

Li J, Liu S, Lakshminarayanan R, Bai Y, Pervushin K, Verma C, Beuerman RW.

Biochim Biophys Acta. 2013 Mar;1828(3):1112-21. doi: 10.1016/j.bbamem.2012.12.015. Epub 2012 Dec 26.

7.

Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units.

Ma QQ, Dong N, Shan AS, Lv YF, Li YZ, Chen ZH, Cheng BJ, Li ZY.

Amino Acids. 2012 Dec;43(6):2527-36. doi: 10.1007/s00726-012-1334-7. Epub 2012 Jun 15.

PMID:
22699557
8.

Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria.

Leptihn S, Har JY, Chen J, Ho B, Wohland T, Ding JL.

BMC Biol. 2009 May 11;7:22. doi: 10.1186/1741-7007-7-22.

9.

Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides.

Han FF, Gao YH, Luan C, Xie YG, Liu YF, Wang YZ.

J Dairy Sci. 2013 Jun;96(6):3471-87. doi: 10.3168/jds.2012-6104. Epub 2013 Apr 5.

PMID:
23567049
10.
11.

Structure and mode of action of the antimicrobial peptide arenicin.

Andrä J, Jakovkin I, Grötzinger J, Hecht O, Krasnosdembskaya AD, Goldmann T, Gutsmann T, Leippe M.

Biochem J. 2008 Feb 15;410(1):113-22.

PMID:
17935487
12.

Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b.

Sun Y, Dong W, Sun L, Ma L, Shang D.

Biomaterials. 2015 Jan;37:299-311. doi: 10.1016/j.biomaterials.2014.10.041. Epub 2014 Oct 24.

PMID:
25453959
13.

Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity.

Bagheri M, Keller S, Dathe M.

Antimicrob Agents Chemother. 2011 Feb;55(2):788-97. doi: 10.1128/AAC.01098-10. Epub 2010 Nov 22.

14.

Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding.

Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, An FY, Shelburne CE.

Biochemistry. 2006 May 23;45(20):6529-40.

15.

Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

Zhao J, Zhao C, Liang G, Zhang M, Zheng J.

J Chem Inf Model. 2013 Dec 23;53(12):3280-96. doi: 10.1021/ci400477e. Epub 2013 Dec 6.

PMID:
24279498
16.

Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.

Zhu WL, Lan H, Park Y, Yang ST, Kim JI, Park IS, You HJ, Lee JS, Park YS, Kim Y, Hahm KS, Shin SY.

Biochemistry. 2006 Oct 31;45(43):13007-17.

PMID:
17059217
17.

Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.

Monteiro C, Fernandes M, Pinheiro M, Maia S, Seabra CL, Ferreira-da-Silva F, Costa F, Reis S, Gomes P, Martins MC.

Biochim Biophys Acta. 2015 May;1848(5):1139-46. doi: 10.1016/j.bbamem.2015.02.001. Epub 2015 Feb 10.

18.

Ceragenins: cholic acid-based mimics of antimicrobial peptides.

Lai XZ, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, Epand RF, Epand RM, Savage PB.

Acc Chem Res. 2008 Oct;41(10):1233-40. doi: 10.1021/ar700270t. Epub 2008 Jul 11.

PMID:
18616297
19.

Structure-function characterization and optimization of a plant-derived antibacterial peptide.

Suarez M, Haenni M, Canarelli S, Fisch F, Chodanowski P, Servis C, Michielin O, Freitag R, Moreillon P, Mermod N.

Antimicrob Agents Chemother. 2005 Sep;49(9):3847-57.

20.

Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843.

Thennarasu S, Lee DK, Tan A, Prasad Kari U, Ramamoorthy A.

Biochim Biophys Acta. 2005 Jun 1;1711(1):49-58. Epub 2005 Mar 7.

Supplemental Content

Support Center