Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

An Essential role for DeltaFosB in the median preoptic nucleus in the sustained hypertensive effects of chronic intermittent hypoxia.

Cunningham JT, Knight WD, Mifflin SW, Nestler EJ.

Hypertension. 2012 Jul;60(1):179-87. doi: 10.1161/HYPERTENSIONAHA.112.193789. Epub 2012 Jun 11.

2.

Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions.

Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT.

Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R131-9. doi: 10.1152/ajpregu.00830.2010. Epub 2011 May 4.

3.

Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia.

Knight WD, Saxena A, Shell B, Nedungadi TP, Mifflin SW, Cunningham JT.

Am J Physiol Regul Integr Comp Physiol. 2013 Nov 1;305(9):R1051-8. doi: 10.1152/ajpregu.00541.2012. Epub 2013 Sep 11.

4.

Knockdown of tyrosine hydroxylase in the nucleus of the solitary tract reduces elevated blood pressure during chronic intermittent hypoxia.

Bathina CS, Rajulapati A, Franzke M, Yamamoto K, Cunningham JT, Mifflin S.

Am J Physiol Regul Integr Comp Physiol. 2013 Nov 1;305(9):R1031-9. doi: 10.1152/ajpregu.00260.2013. Epub 2013 Sep 18.

5.

Role of angiotensin-converting enzyme 1 within the median preoptic nucleus following chronic intermittent hypoxia.

Faulk K, Shell B, Nedungadi TP, Cunningham JT.

Am J Physiol Regul Integr Comp Physiol. 2017 Feb 1;312(2):R245-R252. doi: 10.1152/ajpregu.00472.2016. Epub 2016 Dec 21.

PMID:
28003214
6.

Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

Saxena A, Little JT, Nedungadi TP, Cunningham JT.

Am J Physiol Heart Circ Physiol. 2015 Mar 1;308(5):H435-46. doi: 10.1152/ajpheart.00747.2014. Epub 2014 Dec 24.

7.

Rats selectively bred for differences in aerobic capacity have similar hypertensive responses to chronic intermittent hypoxia.

Sharpe AL, Andrade MA, Herrera-Rosales M, Britton SL, Koch LG, Toney GM.

Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H403-9. doi: 10.1152/ajpheart.00317.2013. Epub 2013 May 24.

8.

Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary-adrenal stress reactivity and Fos induction in the rat locus coeruleus in response to subsequent immobilization stress.

Ma S, Mifflin SW, Cunningham JT, Morilak DA.

Neuroscience. 2008 Jul 17;154(4):1639-47. doi: 10.1016/j.neuroscience.2008.04.068. Epub 2008 May 6.

9.

Immunoreactivity for neuronal NOS and fluorescent indication of NO formation in the NTS of juvenile rats submitted to chronic intermittent hypoxia.

Pajolla GP, Accorsi-Mendonça D, Lunardi CN, Bendhack LM, Machado BH, Llewellyn-Smith IJ.

Auton Neurosci. 2009 Jun 15;148(1-2):55-62. doi: 10.1016/j.autneu.2009.03.003. Epub 2009 Apr 5.

PMID:
19345616
10.

Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus.

Sharpe AL, Calderon AS, Andrade MA, Cunningham JT, Mifflin SW, Toney GM.

Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1772-80. doi: 10.1152/ajpheart.00592.2013. Epub 2013 Oct 4.

11.

Chronic intermittent hypoxia-induced augmented cardiorespiratory outflow mediated by vasopressin-V₁A receptor signaling in the medulla.

Prabha K, Balan KV, Martin RJ, Lamanna JC, Haxhiu MA, Dick TE.

Adv Exp Med Biol. 2011;701:319-25. doi: 10.1007/978-1-4419-7756-4_43.

PMID:
21445804
12.

Left ventricular dysfunction and associated cellular injury in rats exposed to chronic intermittent hypoxia.

Chen L, Zhang J, Gan TX, Chen-Izu Y, Hasday JD, Karmazyn M, Balke CW, Scharf SM.

J Appl Physiol (1985). 2008 Jan;104(1):218-23. Epub 2007 Nov 15.

13.

Reduced c-Fos expression in medullary catecholaminergic neurons in rats 20 h after exposure to chronic intermittent hypoxia.

Herr KB, Stettner GM, Kubin L.

Am J Physiol Regul Integr Comp Physiol. 2013 Apr 1;304(7):R514-22. doi: 10.1152/ajpregu.00542.2012. Epub 2013 Jan 30.

14.

Neural Control of Blood Pressure in Chronic Intermittent Hypoxia.

Shell B, Faulk K, Cunningham JT.

Curr Hypertens Rep. 2016 Mar;18(3):19. doi: 10.1007/s11906-016-0627-8. Review.

15.

Chronic intermittent hypoxia modulates nNOS mRNA and protein expression in the rat hypothalamus.

Huang J, Tamisier R, Ji E, Tong J, Weiss WJ.

Respir Physiol Neurobiol. 2007 Aug 15;158(1):30-8. Epub 2007 Mar 18.

PMID:
17442632
16.

Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract.

Moreau JM, Ciriello J.

Brain Res. 2015 Oct 5;1622:300-7. doi: 10.1016/j.brainres.2015.07.007. Epub 2015 Jul 14.

PMID:
26183015
17.

Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats.

Kc P, Balan KV, Tjoe SS, Martin RJ, Lamanna JC, Haxhiu MA, Dick TE.

J Physiol. 2010 Feb 15;588(Pt 4):725-40. doi: 10.1113/jphysiol.2009.184580. Epub 2010 Jan 5.

18.

Role of the median preoptic nucleus in chronic angiotensin II-induced hypertension.

Ployngam T, Collister JP.

Brain Res. 2008 Oct 31;1238:75-84. doi: 10.1016/j.brainres.2008.08.020. Epub 2008 Aug 16.

PMID:
18760264
19.

Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia.

Del Rio R, Moya EA, Parga MJ, Madrid C, Iturriaga R.

Eur Respir J. 2012 Jun;39(6):1492-500. doi: 10.1183/09031936.00141511. Epub 2011 Dec 19.

20.

Resetting of the sympathetic baroreflex is associated with the onset of hypertension during chronic intermittent hypoxia.

Yamamoto K, Eubank W, Franzke M, Mifflin S.

Auton Neurosci. 2013 Jan;173(1-2):22-7. doi: 10.1016/j.autneu.2012.10.015. Epub 2012 Nov 17.

Supplemental Content

Support Center