Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.

Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R.

Nanoscale. 2012 Aug 7;4(15):4426-9. doi: 10.1039/c2nr30768e. Epub 2012 Jun 11.

PMID:
22688679
2.

Nano-mechanical characterization of disassembling amyloid fibrils using the Peak Force QNM method.

Wang W, Guo Z, Sun J, Li Z.

Biopolymers. 2017 Feb;107(2):61-69. doi: 10.1002/bip.22992.

PMID:
27696370
3.

Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.

Ruggeri FS, Adamcik J, Jeong JS, Lashuel HA, Mezzenga R, Dietler G.

Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2462-6. doi: 10.1002/anie.201409050. Epub 2015 Jan 14.

PMID:
25588987
4.

Mesoscopic properties of semiflexible amyloid fibrils.

Sagis LM, Veerman C, van der Linden E.

Langmuir. 2004 Feb 3;20(3):924-7.

PMID:
15773124
5.
6.

Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.

Pan K, Zhong Q.

Soft Matter. 2015 Aug 7;11(29):5898-904. doi: 10.1039/c5sm01037c.

PMID:
26112282
7.

Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.

Sasaki N, Saitoh Y, Sharma RK, Furusawa K.

Int J Biol Macromol. 2016 Nov;92:240-245. doi: 10.1016/j.ijbiomac.2016.07.011. Epub 2016 Jul 10.

PMID:
27411296
8.
9.

Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading.

Paparcone R, Keten S, Buehler MJ.

J Biomech. 2010 Apr 19;43(6):1196-201. doi: 10.1016/j.jbiomech.2009.11.026. Epub 2009 Dec 30.

PMID:
20044089
10.
11.

Characterization of the nanoscale properties of individual amyloid fibrils.

Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME.

Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15806-11. Epub 2006 Oct 12.

12.

Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.

Murvai Ü, Somkuti J, Smeller L, Penke B, Kellermayer MS.

Biochim Biophys Acta. 2015 May;1854(5):327-32. doi: 10.1016/j.bbapap.2015.01.003. Epub 2015 Jan 17.

PMID:
25600136
13.

Aggregation and fibrillogenesis of proteins not associated with disease: a few case studies.

Lassé M, Gerrard JA, Pearce FG.

Subcell Biochem. 2012;65:253-70. doi: 10.1007/978-94-007-5416-4_11. Review.

PMID:
23225007
14.

Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils.

Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J.

Biochemistry. 2011 Dec 13;50(49):10624-36. doi: 10.1021/bi2012383. Epub 2011 Nov 16.

PMID:
22054421
15.

Protein amyloids develop an intrinsic fluorescence signature during aggregation.

Chan FT, Kaminski Schierle GS, Kumita JR, Bertoncini CW, Dobson CM, Kaminski CF.

Analyst. 2013 Apr 7;138(7):2156-62. doi: 10.1039/c3an36798c. Epub 2013 Feb 18.

16.

Studies of the aggregation of an amyloidogenic alpha-synuclein peptide fragment.

Madine J, Doig AJ, Kitmitto A, Middleton DA.

Biochem Soc Trans. 2005 Nov;33(Pt 5):1113-5.

PMID:
16246058
17.
18.

The formation of amyloid fibrils from proteins in the lysozyme family.

Trexler AJ, Nilsson MR.

Curr Protein Pept Sci. 2007 Dec;8(6):537-57. Review.

PMID:
18220842
19.

Cross-seeding effects of amyloid β-protein and α-synuclein.

Ono K, Takahashi R, Ikeda T, Yamada M.

J Neurochem. 2012 Sep;122(5):883-90. doi: 10.1111/j.1471-4159.2012.07847.x. Epub 2012 Jul 23.

20.

Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy.

Margittai M, Langen R.

Q Rev Biophys. 2008 Aug-Nov;41(3-4):265-97. doi: 10.1017/S0033583508004733. Review.

PMID:
19079806

Supplemental Content

Support Center