Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 290

1.

Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments.

Courcelles M, Bridon G, Lemieux S, Thibault P.

J Proteome Res. 2012 Jul 6;11(7):3753-65. doi: 10.1021/pr300229m. Epub 2012 Jun 22.

PMID:
22668510
2.

Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.

Bridon G, Bonneil E, Muratore-Schroeder T, Caron-Lizotte O, Thibault P.

J Proteome Res. 2012 Feb 3;11(2):927-40. doi: 10.1021/pr200722s. Epub 2011 Dec 1.

PMID:
22059388
3.

Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.

Han D, Moon S, Kim Y, Ho WK, Kim K, Kang Y, Jun H, Kim Y.

J Proteome Res. 2012 Apr 6;11(4):2206-23. doi: 10.1021/pr200990b. Epub 2012 Mar 14.

PMID:
22276854
4.

Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS.

Imanishi SY, Kochin V, Ferraris SE, de Thonel A, Pallari HM, Corthals GL, Eriksson JE.

Mol Cell Proteomics. 2007 Aug;6(8):1380-91. Epub 2007 May 17.

5.

Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach.

Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG, Chen YJ.

Mol Vis. 2010 Feb 24;16:294-302.

6.

Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.

Chen X, Wu D, Zhao Y, Wong BH, Guo L.

J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Jan 1;879(1):25-34. doi: 10.1016/j.jchromb.2010.11.004. Epub 2010 Nov 10.

PMID:
21130716
7.

Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.

Domon B, Bodenmiller B, Carapito C, Hao Z, Huehmer A, Aebersold R.

J Proteome Res. 2009 Jun;8(6):2633-9. doi: 10.1021/pr800834e.

PMID:
19435317
8.

Delayed times to tissue fixation result in unpredictable global phosphoproteome changes.

Gündisch S, Grundner-Culemann K, Wolff C, Schott C, Reischauer B, Machatti M, Groelz D, Schaab C, Tebbe A, Becker KF.

J Proteome Res. 2013 Oct 4;12(10):4424-34. doi: 10.1021/pr400451z. Epub 2013 Sep 17.

PMID:
23984901
9.

Advances in phosphopeptide enrichment techniques for phosphoproteomics.

Beltran L, Cutillas PR.

Amino Acids. 2012 Sep;43(3):1009-24. doi: 10.1007/s00726-012-1288-9. Epub 2012 Jul 22. Review.

PMID:
22821267
10.

Technologies and challenges in large-scale phosphoproteomics.

Engholm-Keller K, Larsen MR.

Proteomics. 2013 Mar;13(6):910-31. doi: 10.1002/pmic.201200484. Review.

PMID:
23404676
11.

Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.

Ye J, Zhang X, Young C, Zhao X, Hao Q, Cheng L, Jensen ON.

J Proteome Res. 2010 Jul 2;9(7):3561-73. doi: 10.1021/pr100075x.

PMID:
20450229
13.

Combinatorial use of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and strong cation exchange (SCX) chromatography for in-depth phosphoproteome analysis.

Zarei M, Sprenger A, Gretzmeier C, Dengjel J.

J Proteome Res. 2012 Aug 3;11(8):4269-76. doi: 10.1021/pr300375d. Epub 2012 Jul 20.

PMID:
22768876
14.

Enhanced separation and characterization of deamidated peptides with RP-ERLIC-based multidimensional chromatography coupled with tandem mass spectrometry.

Hao P, Qian J, Dutta B, Cheow ES, Sim KH, Meng W, Adav SS, Alpert A, Sze SK.

J Proteome Res. 2012 Mar 2;11(3):1804-11. doi: 10.1021/pr201048c. Epub 2012 Feb 3.

PMID:
22239700
15.

Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.

Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ.

J Proteome Res. 2008 Feb;7(2):687-97. Epub 2007 Nov 23.

PMID:
18034456
16.

Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets.

Alcolea MP, Kleiner O, Cutillas PR.

J Proteome Res. 2009 Aug;8(8):3808-15. doi: 10.1021/pr800955n.

PMID:
19537829
17.

Analytical strategies in mass spectrometry-based phosphoproteomics.

Rosenqvist H, Ye J, Jensen ON.

Methods Mol Biol. 2011;753:183-213. doi: 10.1007/978-1-61779-148-2_13.

PMID:
21604124
18.

Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.

Zhou H, Elisma F, Denis NJ, Wright TG, Tian R, Zhou H, Hou W, Zou H, Figeys D.

J Proteome Res. 2010 Mar 5;9(3):1279-88. doi: 10.1021/pr900767j.

PMID:
20067319
19.

Phosphoproteomics by mass spectrometry and classical protein chemistry approaches.

Salih E.

Mass Spectrom Rev. 2005 Nov-Dec;24(6):828-46. Review.

PMID:
15538747
20.

Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis.

Wu HY, Tseng VS, Liao PC.

J Proteome Res. 2007 May;6(5):1812-21. Epub 2007 Apr 3.

PMID:
17402769

Supplemental Content

Support Center