Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 75

1.

Proline rich motifs as drug targets in immune mediated disorders.

Srinivasan M, Dunker AK.

Int J Pept. 2012;2012:634769. doi: 10.1155/2012/634769. Epub 2012 May 16.

2.

Recognition of proline-rich motifs by protein-protein-interaction domains.

Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H.

Angew Chem Int Ed Engl. 2005 May 6;44(19):2852-69. Review.

PMID:
15880548
3.

Host-guest study of left-handed polyproline II helix formation.

Kelly MA, Chellgren BW, Rucker AL, Troutman JM, Fried MG, Miller AF, Creamer TP.

Biochemistry. 2001 Dec 4;40(48):14376-83.

PMID:
11724549
4.

CD80 binding polyproline helical peptide inhibits T cell activation.

Srinivasan M, Lu D, Eri R, Brand DD, Haque A, Blum JS.

J Biol Chem. 2005 Mar 18;280(11):10149-55. Epub 2004 Dec 14.

5.

Proline-rich sequence recognition domains (PRD): ligands, function and inhibition.

Freund C, Schmalz HG, Sticht J, Kühne R.

Handb Exp Pharmacol. 2008;(186):407-29. doi: 10.1007/978-3-540-72843-6_17. Review.

PMID:
18491062
6.

Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions.

Byrne C, Miclet E, Broutin I, Gallo D, Pelekanou V, Kampa M, Castanas E, Leclercq G, Jacquot Y.

Chirality. 2013 Oct;25(10):628-42. doi: 10.1002/chir.22188. Epub 2013 Aug 8.

PMID:
23925889
7.
8.

Left-handed polyproline II helix formation is (very) locally driven.

Creamer TP.

Proteins. 1998 Nov 1;33(2):218-26.

PMID:
9779789
9.

Alternative binding modes of proline-rich peptides binding to the GYF domain.

Gu W, Kofler M, Antes I, Freund C, Helms V.

Biochemistry. 2005 May 3;44(17):6404-15.

PMID:
15850374
10.

The impact of either 4-R-hydroxyproline or 4-R-fluoroproline on the conformation and SH3m-cort binding of HPK1 proline-rich peptide.

Borgogno A, Ruzza P.

Amino Acids. 2013 Feb;44(2):607-14. doi: 10.1007/s00726-012-1383-y. Epub 2012 Sep 14.

PMID:
22976002
11.

The crystal structure of the N-terminal SH3 domain of Grb2.

Guruprasad L, Dhanaraj V, Timm D, Blundell TL, Gout I, Waterfield MD.

J Mol Biol. 1995 May 12;248(4):856-66.

PMID:
7752246
12.

Primary contact sites in intrinsically unstructured proteins: the case of calpastatin and microtubule-associated protein 2.

Csizmók V, Bokor M, Bánki P, Klement E, Medzihradszky KF, Friedrich P, Tompa K, Tompa P.

Biochemistry. 2005 Mar 15;44(10):3955-64.

PMID:
15751971
13.

4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity.

Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G.

J Pept Sci. 2006 Jul;12(7):462-71.

PMID:
16506148
14.

Diversity of polyproline recognition by EVH1 domains.

Peterson FC, Volkman BF.

Front Biosci (Landmark Ed). 2009 Jan 1;14:833-46. Review.

15.
16.

Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis.

Ravi Chandra B, Gowthaman R, Akhouri RR, Gupta D, Sharma A.

Protein Eng Des Sel. 2004 Feb;17(2):175-82. Epub 2004 Feb 20.

PMID:
15047914
17.

Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.

Stein A, Aloy P.

PLoS Comput Biol. 2010 May 20;6(5):e1000789. doi: 10.1371/journal.pcbi.1000789.

18.

Cell-cell membrane fusion induced by p15 fusion-associated small transmembrane (FAST) protein requires a novel fusion peptide motif containing a myristoylated polyproline type II helix.

Top D, Read JA, Dawe SJ, Syvitski RT, Duncan R.

J Biol Chem. 2012 Jan 27;287(5):3403-14. doi: 10.1074/jbc.M111.305268. Epub 2011 Dec 14.

19.
20.

Host-guest scale of left-handed polyproline II helix formation.

Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP.

Proteins. 2003 Oct 1;53(1):68-75.

PMID:
12945050

Supplemental Content

Support Center