Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Use of human perivascular stem cells for bone regeneration.

James AW, Zara JN, Corselli M, Chiang M, Yuan W, Nguyen V, Askarinam A, Goyal R, Siu RK, Scott V, Lee M, Ting K, Péault B, Soo C.

J Vis Exp. 2012 May 25;(63):e2952. doi: 10.3791/2952.

2.

Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering.

James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, Pang S, Stoker D, Wu B, Ting K, Péault B, Soo C.

Stem Cells Transl Med. 2012 Jun;1(6):510-9. doi: 10.5966/sctm.2012-0002. Epub 2012 Jun 11.

3.

An abundant perivascular source of stem cells for bone tissue engineering.

James AW, Zara JN, Corselli M, Askarinam A, Zhou AM, Hourfar A, Nguyen A, Megerdichian S, Asatrian G, Pang S, Stoker D, Zhang X, Wu B, Ting K, Péault B, Soo C.

Stem Cells Transl Med. 2012 Sep;1(9):673-84. doi: 10.5966/sctm.2012-0053. Epub 2012 Sep 5.

4.

Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein.

Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, Zhang X, Ting K, Péault B, Soo C.

Tissue Eng Part A. 2013 Jun;19(11-12):1386-97. doi: 10.1089/ten.TEA.2012.0367. Epub 2013 Apr 4.

5.

The Nell-1 growth factor stimulates bone formation by purified human perivascular cells.

Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z, Shen J, Kwak J, Zara JN, Chen F, Zhang H, Yin Z, Wu B, Ting K, Soo C.

Tissue Eng Part A. 2011 Oct;17(19-20):2497-509. doi: 10.1089/ten.TEA.2010.0705. Epub 2011 Jul 18.

6.

[Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats].

Liu GP, Li YL, Sun J, Cui L, Zhang WJ, Cao YL.

Zhonghua Zheng Xing Wai Ke Za Zhi. 2010 Jan;26(1):34-8. Chinese.

PMID:
20432924
7.

BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model.

Gao X, Usas A, Lu A, Tang Y, Wang B, Chen CW, Li H, Tebbets JC, Cummins JH, Huard J.

Cell Transplant. 2013;22(12):2393-408. doi: 10.3727/096368912X658854. Epub 2012 Nov 1.

8.

Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects.

König MA, Canepa DD, Cadosch D, Casanova E, Heinzelmann M, Rittirsch D, Plecko M, Hemmi S, Simmen HP, Cinelli P, Wanner GA.

Cytotherapy. 2016 Jan;18(1):41-52. doi: 10.1016/j.jcyt.2015.10.002. Epub 2015 Nov 10.

PMID:
26563474
9.

Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats.

Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I.

Cell Transplant. 2012;21(8):1667-77. doi: 10.3727/096368912X638937. Epub 2012 Apr 10.

PMID:
22507568
10.

Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects.

Koob S, Torio-Padron N, Stark GB, Hannig C, Stankovic Z, Finkenzeller G.

Tissue Eng Part A. 2011 Feb;17(3-4):311-21. doi: 10.1089/ten.TEA.2010.0338. Epub 2010 Nov 22.

PMID:
20799886
11.

Human perivascular stem cell-based bone graft substitute induces rat spinal fusion.

Chung CG, James AW, Asatrian G, Chang L, Nguyen A, Le K, Bayani G, Lee R, Stoker D, Zhang X, Ting K, Péault B, Soo C.

Stem Cells Transl Med. 2014 Oct;3(10):1231-41. doi: 10.5966/sctm.2014-0027. Epub 2014 Aug 25. Erratum in: Stem Cells Transl Med. 2015 May;4(5):538. Pang, Shen [added].

12.

Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits.

Li G, Wang X, Cao J, Ju Z, Ma D, Liu Y, Zhang J.

Br J Oral Maxillofac Surg. 2014 Feb;52(2):134-9. doi: 10.1016/j.bjoms.2013.10.004. Epub 2013 Nov 6.

PMID:
24210781
13.

A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.

Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A, Ottolenghi L.

J Craniofac Surg. 2013 May;24(3):866-71. doi: 10.1097/SCS.0b013e31827ca530.

PMID:
23714898
14.

Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.

Park HJ, Yu SJ, Yang K, Jin Y, Cho AN, Kim J, Lee B, Yang HS, Im SG, Cho SW.

Biomaterials. 2014 Dec;35(37):9811-23. doi: 10.1016/j.biomaterials.2014.09.002. Epub 2014 Sep 17.

PMID:
25241158
15.

The effect of differentiation stage of amniotic fluid stem cells on bone regeneration.

Rodrigues MT, Lee BK, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ.

Biomaterials. 2012 Sep;33(26):6069-78. doi: 10.1016/j.biomaterials.2012.05.016. Epub 2012 Jun 5.

PMID:
22672834
16.

Endothelial progenitor cells from peripheral blood support bone regeneration by provoking an angiogenic response.

Goerke SM, Obermeyer J, Plaha J, Stark GB, Finkenzeller G.

Microvasc Res. 2015 Mar;98:40-7. doi: 10.1016/j.mvr.2014.12.001. Epub 2014 Dec 12.

PMID:
25497270
17.

Isolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle.

Zheng B, Chen CW, Li G, Thompson SD, Poddar M, Péault B, Huard J.

Cell Transplant. 2012;21(6):1087-93. doi: 10.3727/096368912X636876. Epub 2012 Apr 2.

18.

The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells With Increased Chondrogenic Potential for Regenerative Medicine.

Hindle P, Khan N, Biant L, Péault B.

Stem Cells Transl Med. 2016 Aug 5. pii: sctm.2016-0040. [Epub ahead of print]

20.

In vivo evaluation of mixtures of uncultured freshly isolated adipose-derived stem cells and demineralized bone matrix for bone regeneration in a rat critically sized calvarial defect model.

Rhee SC, Ji YH, Gharibjanian NA, Dhong ES, Park SH, Yoon ES.

Stem Cells Dev. 2011 Feb;20(2):233-42. doi: 10.1089/scd.2009.0525. Epub 2010 Oct 12.

PMID:
20528145

Supplemental Content

Support Center