Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Release factor one is nonessential in Escherichia coli.

Johnson DB, Wang C, Xu J, Schultz MD, Schmitz RJ, Ecker JR, Wang L.

ACS Chem Biol. 2012 Aug 17;7(8):1337-44. doi: 10.1021/cb300229q. Epub 2012 Jun 13.

2.

RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites.

Johnson DB, Xu J, Shen Z, Takimoto JK, Schultz MD, Schmitz RJ, Xiang Z, Ecker JR, Briggs SP, Wang L.

Nat Chem Biol. 2011 Sep 18;7(11):779-86. doi: 10.1038/nchembio.657.

3.

Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.

Wang L.

Acc Chem Res. 2017 Oct 6. doi: 10.1021/acs.accounts.7b00376. [Epub ahead of print]

PMID:
28984438
4.

Global analysis of translation termination in E. coli.

Baggett NE, Zhang Y, Gross CA.

PLoS Genet. 2017 Mar 16;13(3):e1006676. doi: 10.1371/journal.pgen.1006676. eCollection 2017 Mar.

5.

R213I mutation in release factor 2 (RF2) is one step forward for engineering an omnipotent release factor in bacteria Escherichia coli.

Korkmaz G, Sanyal S.

J Biol Chem. 2017 Sep 8;292(36):15134-15142. doi: 10.1074/jbc.M117.785238. Epub 2017 Jul 25.

PMID:
28743745
6.
7.
8.

Coevolution between Stop Codon Usage and Release Factors in Bacterial Species.

Wei Y, Wang J, Xia X.

Mol Biol Evol. 2016 Sep;33(9):2357-67. doi: 10.1093/molbev/msw107. Epub 2016 Jun 13.

9.

Thermodynamic and kinetic insights into stop codon recognition by release factor 1.

Trappl K, Mathew MA, Joseph S.

PLoS One. 2014 Apr 3;9(4):e94058. doi: 10.1371/journal.pone.0094058. eCollection 2014.

10.
11.

Functional interaction between release factor one and P-site peptidyl-tRNA on the ribosome.

Zhang S, Rydén-Aulin M, Isaksson LA.

J Mol Biol. 1996 Aug 16;261(2):98-107.

PMID:
8757279
12.
13.

Codon reassignment in the Escherichia coli genetic code.

Mukai T, Hayashi A, Iraha F, Sato A, Ohtake K, Yokoyama S, Sakamoto K.

Nucleic Acids Res. 2010 Dec;38(22):8188-95. doi: 10.1093/nar/gkq707. Epub 2010 Aug 11.

14.

Functional interaction between tRNA2Gly2 at the ribosomal P-site and RF1 during termination at UAG.

Zhang S, Rydén-Aulin M, Isaksson LA.

J Mol Biol. 1998 Dec 18;284(5):1243-6.

PMID:
9878344
15.

Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo.

Mora L, Heurgué-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH.

J Biol Chem. 2007 Dec 7;282(49):35638-45. Epub 2007 Oct 10.

16.

Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon.

Mukai T, Hoshi H, Ohtake K, Takahashi M, Yamaguchi A, Hayashi A, Yokoyama S, Sakamoto K.

Sci Rep. 2015 May 18;5:9699. doi: 10.1038/srep09699.

17.

Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE.

Diago-Navarro E, Mora L, Buckingham RH, Díaz-Orejas R, Lemonnier M.

Mol Microbiol. 2009 Jan;71(1):66-78. doi: 10.1111/j.1365-2958.2008.06510.x. Epub 2008 Oct 28.

18.

A direct estimation of the context effect on the efficiency of termination.

Pavlov MY, Freistroffer DV, Dincbas V, MacDougall J, Buckingham RH, Ehrenberg M.

J Mol Biol. 1998 Dec 4;284(3):579-90.

PMID:
9826500
19.

A tripeptide 'anticodon' deciphers stop codons in messenger RNA.

Ito K, Uno M, Nakamura Y.

Nature. 2000 Feb 10;403(6770):680-4.

PMID:
10688208
20.

Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation.

Hong SH, Ntai I, Haimovich AD, Kelleher NL, Isaacs FJ, Jewett MC.

ACS Synth Biol. 2014 Jun 20;3(6):398-409. doi: 10.1021/sb400140t. Epub 2014 Jan 2.

Supplemental Content

Support Center