Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Application of nanoLC-MS/MS to the shotgun proteomic analysis of the nematocyst proteins from jellyfish Stomolophus meleagris.

Li R, Yu H, Xing R, Liu S, Qing Y, Li K, Li B, Meng X, Cui J, Li P.

J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Jun 15;899:86-95. doi: 10.1016/j.jchromb.2012.05.006. Epub 2012 May 15.

PMID:
22651994
2.

Isolation, identification and characterization of a novel antioxidant protein from the nematocyst of the jellyfish Stomolophus meleagris.

Li R, Yu H, Xing R, Liu S, Qing Y, Li K, Li B, Meng X, Cui J, Li P.

Int J Biol Macromol. 2012 Oct;51(3):274-8. doi: 10.1016/j.ijbiomac.2012.05.015. Epub 2012 May 22.

PMID:
22627106
3.

Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting.

Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, Li P.

J Proteomics. 2014 Jun 25;106:17-29. doi: 10.1016/j.jprot.2014.04.011. Epub 2014 Apr 18.

PMID:
24747124
4.

Isolation and in vitro partial characterization of hemolytic proteins from the nematocyst venom of the jellyfish Stomolophus meleagris.

Li R, Yu H, Xing R, Liu S, Qing Y, Li K, Li B, Meng X, Cui J, Li P.

Toxicol In Vitro. 2013 Sep;27(6):1620-5. doi: 10.1016/j.tiv.2013.04.004. Epub 2013 Apr 17.

PMID:
23603477
5.

Shotgun protein analysis by liquid chromatography-tandem mass spectrometry.

Kubota K, Kosaka T, Ichikawa K.

Methods Mol Biol. 2009;519:483-94. doi: 10.1007/978-1-59745-281-6_32.

PMID:
19381604
6.

Shotgun proteomic analysis of microdissected postmortem human pituitary using complementary two-dimensional liquid chromatography coupled with tandem mass spectrometer.

Liu Y, Zhuang D, Hou R, Li J, Xu G, Song T, Chen L, Yan G, Pang Q, Zhu J.

Anal Chim Acta. 2011 Mar 4;688(2):183-90. doi: 10.1016/j.aca.2010.12.032. Epub 2011 Jan 13.

PMID:
21334484
7.

Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification.

Drabik A, Bodzon-Kulakowska A, Suder P.

J Mass Spectrom. 2012 Oct;47(10):1347-52. doi: 10.1002/jms.3086.

PMID:
23019167
8.

Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry.

Vanrobaeys F, Van Coster R, Dhondt G, Devreese B, Van Beeumen J.

J Proteome Res. 2005 Nov-Dec;4(6):2283-93.

PMID:
16335977
9.
10.

Nano LC-MS/MS: a robust setup for proteomic analysis.

Gaspari M, Cuda G.

Methods Mol Biol. 2011;790:115-26. doi: 10.1007/978-1-61779-319-6_9.

PMID:
21948410
11.

An integrated approach of differential mass spectrometry and gene ontology analysis identified novel proteins regulating neuronal differentiation and survival.

Kobayashi D, Kumagai J, Morikawa T, Wilson-Morifuji M, Wilson A, Irie A, Araki N.

Mol Cell Proteomics. 2009 Oct;8(10):2350-67. doi: 10.1074/mcp.M900179-MCP200. Epub 2009 Jun 13.

12.

Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC-MS/MS for estrogen-induced transcriptional regulation.

Wu CJ, Chen YW, Tai JH, Chen SH.

J Proteome Res. 2011 Mar 4;10(3):1088-97. doi: 10.1021/pr100864b. Epub 2011 Feb 14.

PMID:
21210654
13.

Shotgun proteomic analysis of Arabidopsis thaliana leaves.

Lee J, Garrett WM, Cooper B.

J Sep Sci. 2007 Sep;30(14):2225-30.

PMID:
17654619
14.

Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis.

Weston AJ, Chung R, Dunlap WC, Morandini AC, Marques AC, Moura-da-Silva AM, Ward M, Padilla G, da Silva LF, Andreakis N, Long PF.

Toxicon. 2013 Sep;71:11-7. doi: 10.1016/j.toxicon.2013.05.002. Epub 2013 May 18.

PMID:
23688393
15.

Shotgun proteomics: a qualitative approach applying isoelectric focusing on immobilized pH gradient and LC-MS/MS.

Geiser L, Vaezzadeh AR, Deshusses JM, Hochstrasser DF.

Methods Mol Biol. 2011;681:449-58. doi: 10.1007/978-1-60761-913-0_26.

PMID:
20978982
16.

Cloud-point extraction and delipidation of porcine brain proteins in combination with bottom-up mass spectrometry approaches for proteome analysis.

Shevchenko G, Sjödin MO, Malmström D, Wetterhall M, Bergquist J.

J Proteome Res. 2010 Aug 6;9(8):3903-11. doi: 10.1021/pr100116k.

PMID:
20586484
17.

i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins.

Wada K, Ogiwara A, Nagasaka K, Tanaka N, Komatsu Y.

Rapid Commun Mass Spectrom. 2011 Apr 15;25(7):960-8. doi: 10.1002/rcm.4943. Epub 2011 Mar 14.

PMID:
21416533
18.

Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage.

Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L.

J Proteome Res. 2011 Oct 7;10(10):4647-60. doi: 10.1021/pr200455s. Epub 2011 Sep 6.

PMID:
21842911
19.

High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.

Cao R, He Q, Zhou J, He Q, Liu Z, Wang X, Chen P, Xie J, Liang S.

J Proteome Res. 2008 Feb;7(2):535-45. doi: 10.1021/pr070411f. Epub 2008 Jan 1.

PMID:
18166008
20.

In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry.

Miyamoto M, Yoshida Y, Taguchi I, Nagasaka Y, Tasaki M, Zhang Y, Xu B, Nameta M, Sezaki H, Cuellar LM, Osawa T, Morishita H, Sekiyama S, Yaoita E, Kimura K, Yamamoto T.

J Proteome Res. 2007 Sep;6(9):3680-90. Epub 2007 Aug 21.

PMID:
17711322

Supplemental Content

Support Center