Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Magnetic resonance imaging based determination of body compartments with the versatile, interactive sparse sampling (VISS) method.

Buehler T, Ramseier N, Machann J, Schwenzer NF, Boesch C.

J Magn Reson Imaging. 2012 Oct;36(4):951-60. doi: 10.1002/jmri.23707. Epub 2012 May 29.

PMID:
22645058
2.

Correlation of fat distribution in whole body MRI with generally used anthropometric data.

Ludescher B, Machann J, Eschweiler GW, Vanhöfen S, Maenz C, Thamer C, Claussen CD, Schick F.

Invest Radiol. 2009 Nov;44(11):712-9. doi: 10.1097/RLI.0b013e3181afbb1e.

PMID:
19809346
3.

SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging.

Ai T, Padua A, Goerner F, Nittka M, Gugala Z, Jadhav S, Trelles M, Johnson RF, Lindsey RW, Li X, Runge VM.

Invest Radiol. 2012 May;47(5):267-76. doi: 10.1097/RLI.0b013e318240a919.

PMID:
22266987
4.

Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies.

Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, Seidensaal K, Meinzer HP, Heimann T.

J Magn Reson Imaging. 2012 Dec;36(6):1421-34. doi: 10.1002/jmri.23775. Epub 2012 Aug 21.

PMID:
22911921
5.

Topography mapping of whole body adipose tissue using A fully automated and standardized procedure.

Würslin C, Machann J, Rempp H, Claussen C, Yang B, Schick F.

J Magn Reson Imaging. 2010 Feb;31(2):430-9. doi: 10.1002/jmri.22036.

PMID:
20099357
6.

Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study.

Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P.

J Magn Reson Imaging. 2009 Jul;30(1):185-93. doi: 10.1002/jmri.21820.

PMID:
19557740
7.

Comparison of visceral adipose tissue quantification on water suppressed and nonwater-suppressed MRI at 3.0 Tesla.

Zhou A, Murillo H, Cusi K, Peng Q.

J Magn Reson Imaging. 2012 Jun;35(6):1445-52. doi: 10.1002/jmri.23582. Epub 2012 Jan 13.

PMID:
22246813
8.

Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences.

Lichy MP, Wietek BM, Mugler JP 3rd, Horger W, Menzel MI, Anastasiadis A, Siegmann K, Niemeyer T, Königsrainer A, Kiefer B, Schick F, Claussen CD, Schlemmer HP.

Invest Radiol. 2005 Dec;40(12):754-60.

PMID:
16304477
9.

Three-dimensional water/fat separation and T2* estimation based on whole-image optimization--application in breathhold liver imaging at 1.5 T.

Berglund J, Kullberg J.

Magn Reson Med. 2012 Jun;67(6):1684-93. doi: 10.1002/mrm.23185. Epub 2011 Dec 21.

10.

Reproducibility and repeatability of volumetric measurements for olfactory bulb volumetry: which method is appropriate? An update using 3 Tesla MRI.

Burmeister HP, Baltzer PA, Möslein C, Bitter T, Gudziol H, Dietzel M, Guntinas-Lichius O, Kaiser WA.

Acad Radiol. 2011 Jul;18(7):842-9. doi: 10.1016/j.acra.2011.02.018.

PMID:
21669350
11.

Joint intensity inhomogeneity correction for whole-body MR data.

Dzyubachyk O, van der Geest RJ, Staring M, Börnert P, Reijnierse M, Bloeml JL, Lelieveldt BP.

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):106-13.

PMID:
24505655
12.

Computation of transmitted and received B1 fields in magnetic resonance imaging.

Milles J, Zhu YM, Chen NK, Panych LP, Gimenez G, Guttmann CR.

IEEE Trans Biomed Eng. 2006 May;53(5):885-95.

PMID:
16686411
13.

[Interactive thresholded volumetry of abdominal fat using breath-hold t1-weighted magnetic resonance imaging].

Wittsack HJ, Kapitza C, Cohnen M, Jung G, Heinemann L, Mödder U, Poll L.

Rofo. 2006 Aug;178(8):810-5. German.

PMID:
16862508
14.

Simultaneous reconstruction of activity and attenuation for PET/MR.

Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V.

IEEE Trans Med Imaging. 2011 Mar;30(3):804-13. doi: 10.1109/TMI.2010.2095464. Epub 2010 Nov 29.

PMID:
21118768
15.

Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.

Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS.

J Magn Reson Imaging. 2013 Feb;37(2):423-30. doi: 10.1002/jmri.23813. Epub 2012 Sep 25.

16.

Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.

Martirosian P, Boss A, Deimling M, Kiefer B, Schraml C, Schwenzer NF, Claussen CD, Schick F.

Invest Radiol. 2008 Jan;43(1):16-26.

PMID:
18097273
17.

Bias artifact suppression on MR volumes.

Ardizzone E, Pirrone R, Gambino O.

Comput Methods Programs Biomed. 2008 Oct;92(1):35-53. doi: 10.1016/j.cmpb.2008.06.005. Epub 2008 Jul 21.

PMID:
18644657
18.

Interplay between intensity standardization and inhomogeneity correction in MR image processing.

Madabhushi A, Udupa JK.

IEEE Trans Med Imaging. 2005 May;24(5):561-76.

PMID:
15889544
19.

Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results.

Armao D, Guyon JP, Firat Z, Brown MA, Semelka RC.

J Magn Reson Imaging. 2006 May;23(5):736-41.

PMID:
16555257
20.

A fast and automatic method to correct intensity inhomogeneity in MR brain images.

Hou Z, Huang S, Hu Q, Nowinski WL.

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):324-31.

PMID:
17354788

Supplemental Content

Support Center