Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80


Traversing the genomic landscape of prostate cancer from diagnosis to death.

Hieronymus H, Sawyers CL.

Nat Genet. 2012 May 29;44(6):613-4. doi: 10.1038/ng.2301.


Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer.

Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA.

Nat Genet. 2012 May 20;44(6):685-9. doi: 10.1038/ng.2279.


A picture with more details is painted for prostate cancer.

Liu W, Feng J, Xu J.

Asian J Androl. 2012 Nov;14(6):799-800. doi: 10.1038/aja.2012.73. Epub 2012 Jul 30. No abstract available.


Molecular subtyping of prostate cancer.

Kaffenberger SD, Barbieri CE.

Curr Opin Urol. 2016 May;26(3):213-8. doi: 10.1097/MOU.0000000000000285. Review.


Re: Stoehr et al. Lack of evidence for frequent MED12 p.L1224F mutation in prostate tumours from Caucasian patients. J Pathol 2013; 230: 453-456.

Barbieri CE, Sboner A, Rubin MA, Garraway LA.

J Pathol. 2013 Oct;231(2):271. doi: 10.1002/path.4216. No abstract available.


A rare variant, which destroys a FoxA1 site at 8q24, is associated with prostate cancer risk.

Hazelett DJ, Coetzee SG, Coetzee GA.

Cell Cycle. 2013 Jan 15;12(2):379-80. doi: 10.4161/cc.23201. Epub 2012 Jan 15. No abstract available.


Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms.

Kämpjärvi K, Kim NH, Keskitalo S, Clark AD, von Nandelstadh P, Turunen M, Heikkinen T, Park MJ, Mäkinen N, Kivinummi K, Lintula S, Hotakainen K, Nevanlinna H, Hokland P, Böhling T, Bützow R, Böhm J, Mecklin JP, Järvinen H, Kontro M, Visakorpi T, Taipale J, Varjosalo M, Boyer TG, Vahteristo P.

Prostate. 2016 Jan;76(1):22-31. doi: 10.1002/pros.23092. Epub 2015 Sep 18.


Overexpression of hepatocyte nuclear factor-3alpha induces apoptosis through the upregulation and accumulation of cytoplasmic p53 in prostate cancer cells.

Lee HJ, Chattopadhyay S, Yoon WH, Bahk JY, Kim TH, Kang HS, Lee K.

Prostate. 2010 Mar 1;70(4):353-61. doi: 10.1002/pros.21069.


Expression and role of Foxa proteins in prostate cancer.

Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ.

Prostate. 2006 Jul 1;66(10):1013-28.


Lack of evidence for frequent MED12 p.L1224F mutation in prostate tumours from Caucasian patients.

Stoehr R, Taubert H, Gaisa NT, Smeets D, Kneitz B, Giedl J, Ruemmele P, Wieland WF, Rau TT, Hartmann A.

J Pathol. 2013 Aug;230(4):453-6. doi: 10.1002/path.4208.


ErbB3 binding protein 1 represses metastasis-promoting gene anterior gradient protein 2 in prostate cancer.

Zhang Y, Ali TZ, Zhou H, D'Souza DR, Lu Y, Jaffe J, Liu Z, Passaniti A, Hamburger AW.

Cancer Res. 2010 Jan 1;70(1):240-8. doi: 10.1158/0008-5472.CAN-09-2904.


FOXA1: a transcription factor with parallel functions in development and cancer.

Bernardo GM, Keri RA.

Biosci Rep. 2012 Apr 1;32(2):113-30. doi: 10.1042/BSR20110046. Review.


3,3'-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation.

Rahman KM, Banerjee S, Ali S, Ahmad A, Wang Z, Kong D, Sakr WA.

Cancer Res. 2009 May 15;69(10):4468-75. doi: 10.1158/0008-5472.CAN-08-4423. Epub 2009 May 12.


High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer.

Vainio P, Mpindi JP, Kohonen P, Fey V, Mirtti T, Alanen KA, Perälä M, Kallioniemi O, Iljin K.

PLoS One. 2012;7(6):e39801. doi: 10.1371/journal.pone.0039801. Epub 2012 Jun 28.


Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus.

Zhang X, Cowper-Sal lari R, Bailey SD, Moore JH, Lupien M.

Genome Res. 2012 Aug;22(8):1437-46. doi: 10.1101/gr.135665.111. Epub 2012 Jun 4.


The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes.

Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ.

Mol Endocrinol. 2003 Aug;17(8):1484-507. Epub 2003 May 15.


Pioneer factors in hormone-dependent cancers.

Jozwik KM, Carroll JS.

Nat Rev Cancer. 2012 May 4;12(6):381-5. doi: 10.1038/nrc3263. Review.


Gabarapl1 mediates androgen-regulated autophagy in prostate cancer.

Xie CW, Zhou Y, Liu SL, Fang ZY, Su B, Zhang W.

Tumour Biol. 2015 Nov;36(11):8727-33. doi: 10.1007/s13277-015-3542-8. Epub 2015 Jun 7.


Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

Krause WC, Shafi AA, Nakka M, Weigel NL.

Int J Biochem Cell Biol. 2014 Sep;54:49-59. doi: 10.1016/j.biocel.2014.06.013. Epub 2014 Jul 4.


A novel polymorphism in a forkhead box A1 (FOXA1) binding site of the human UDP glucuronosyltransferase 2B17 gene modulates promoter activity and is associated with altered levels of circulating androstane-3α,17β-diol glucuronide.

Hu DG, Gardner-Stephen D, Severi G, Gregory PA, Treloar J, Giles GG, English DR, Hopper JL, Tilley WD, Mackenzie PI.

Mol Pharmacol. 2010 Oct;78(4):714-22. doi: 10.1124/mol.110.065953. Epub 2010 Jul 13.

Supplemental Content

Support Center