Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, Kirschner MW, Clish CB, Mootha VK.

Science. 2012 May 25;336(6084):1040-4. doi: 10.1126/science.1218595.

2.

Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells.

Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, Chan LL, Qiu J, DiPaola RS, Hirshfield KM, Boros LG, Bertino JR, Oltvai ZN, Vazquez A.

Cell Death Dis. 2013 Oct 24;4:e877. doi: 10.1038/cddis.2013.393.

3.

Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.

Meadows AL, Kong B, Berdichevsky M, Roy S, Rosiva R, Blanch HW, Clark DS.

Biotechnol Prog. 2008 Mar-Apr;24(2):334-41. doi: 10.1021/bp070301d. Epub 2008 Feb 29.

PMID:
18307352
4.

Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer.

Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK.

Nat Commun. 2014;5:3128. doi: 10.1038/ncomms4128.

5.

Characterization of the usage of the serine metabolic network in human cancer.

Mehrmohamadi M, Liu X, Shestov AA, Locasale JW.

Cell Rep. 2014 Nov 20;9(4):1507-19. doi: 10.1016/j.celrep.2014.10.026. Epub 2014 Nov 6.

6.

The vitamin D receptor inhibits the respiratory chain, contributing to the metabolic switch that is essential for cancer cell proliferation.

Consiglio M, Destefanis M, Morena D, Foglizzo V, Forneris M, Pescarmona G, Silvagno F.

PLoS One. 2014 Dec 29;9(12):e115816. doi: 10.1371/journal.pone.0115816. eCollection 2014.

7.

Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth.

Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, Coelho PP, Blagih J, Raissi TC, Choinière L, Bridon G, Loginicheva E, Flynn BR, Thomas EC, Tavaré JM, Avizonis D, Pause A, Elder DJ, Artyomov MN, Jones RG.

Mol Cell. 2015 Oct 15;60(2):195-207. doi: 10.1016/j.molcel.2015.08.013.

8.

Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: the heme connection.

di Salvo ML, Contestabile R, Paiardini A, Maras B.

Med Hypotheses. 2013 May;80(5):633-6. doi: 10.1016/j.mehy.2013.02.008. Epub 2013 Mar 6.

PMID:
23474074
9.

Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis.

Forbes NS, Meadows AL, Clark DS, Blanch HW.

Metab Eng. 2006 Nov;8(6):639-52. Epub 2006 Jun 30.

PMID:
16904360
10.

Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells.

Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD.

Cell Rep. 2014 May 22;7(4):1248-58. doi: 10.1016/j.celrep.2014.04.045. Epub 2014 May 10.

11.

Proteomic identification of mitochondrial targets of arginase in human breast cancer.

Singh R, Avliyakulov NK, Braga M, Haykinson MJ, Martinez L, Singh V, Parveen M, Chaudhuri G, Pervin S.

PLoS One. 2013 Nov 5;8(11):e79242. doi: 10.1371/journal.pone.0079242. eCollection 2013.

12.

Serine and glycine metabolism in cancer.

Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G.

Trends Biochem Sci. 2014 Apr;39(4):191-8. doi: 10.1016/j.tibs.2014.02.004. Epub 2014 Mar 20. Review.

13.

Dysregulated metabolism contributes to oncogenesis.

Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, Le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E, Mehrmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE; Target Validation Team.

Semin Cancer Biol. 2015 Dec;35 Suppl:S129-S150. doi: 10.1016/j.semcancer.2015.10.002. Epub 2015 Oct 8. Review.

14.
15.

Crk adaptor proteins act as key signaling integrators for breast tumorigenesis.

Fathers KE, Bell ES, Rajadurai CV, Cory S, Zhao H, Mourskaia A, Zuo D, Madore J, Monast A, Mes-Masson AM, Grosset AA, Gaboury L, Hallet M, Siegel P, Park M.

Breast Cancer Res. 2012 May 8;14(3):R74.

16.

Integration of cancer gene co-expression network and metabolic network to uncover potential cancer drug targets.

Chen J, Ma M, Shen N, Xi JJ, Tian W.

J Proteome Res. 2013 Jun 7;12(6):2354-64. doi: 10.1021/pr400162t. Epub 2013 May 6.

PMID:
23590569
17.

Effects of culture media on metabolic profiling of the human gastric cancer cell line SGC7901.

Huang Z, Shao W, Gu J, Hu X, Shi Y, Xu W, Huang C, Lin D.

Mol Biosyst. 2015 Jul;11(7):1832-40. doi: 10.1039/c5mb00019j.

PMID:
25925870
18.

Silencing the Peroxiredoxin III gene inhibits cell proliferation in breast cancer.

Chua PJ, Lee EH, Yu Y, Yip GW, Tan PH, Bay BH.

Int J Oncol. 2010 Feb;36(2):359-64.

PMID:
20043069
19.

ERRα metabolic nuclear receptor controls growth of colon cancer cells.

Bernatchez G, Giroux V, Lassalle T, Carpentier AC, Rivard N, Carrier JC.

Carcinogenesis. 2013 Oct;34(10):2253-61. doi: 10.1093/carcin/bgt180. Epub 2013 May 29.

PMID:
23720198
20.

Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer.

Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, Piccart M, Sotiriou C.

PLoS One. 2011;6(6):e20980. doi: 10.1371/journal.pone.0020980. Epub 2011 Jun 29.

Supplemental Content

Support Center