Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy.

Kurosaka S, Leu NA, Pavlov I, Han X, Ribeiro PA, Xu T, Bunte R, Saha S, Wang J, Cornachione A, Mai W, Yates JR 3rd, Rassier DE, Kashina A.

J Mol Cell Cardiol. 2012 Sep;53(3):333-41. doi: 10.1016/j.yjmcc.2012.05.007. Epub 2012 May 21.

2.

Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development.

Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR 3rd, Kashina A.

Development. 2008 Dec;135(23):3881-9. doi: 10.1242/dev.022723. Epub 2008 Oct 23. Erratum in: Development. 2008 Dec;135(23):3971.

3.

Arginylation of myosin heavy chain regulates skeletal muscle strength.

Cornachione AS, Leite FS, Wang J, Leu NA, Kalganov A, Volgin D, Han X, Xu T, Cheng YS, Yates JR 3rd, Rassier DE, Kashina A.

Cell Rep. 2014 Jul 24;8(2):470-6. doi: 10.1016/j.celrep.2014.06.019. Epub 2014 Jul 10.

4.

Reduced passive force in skeletal muscles lacking protein arginylation.

Leite FS, Minozzo FC, Kalganov A, Cornachione AS, Cheng YS, Leu NA, Han X, Saripalli C, Yates JR 3rd, Granzier H, Kashina AS, Rassier DE.

Am J Physiol Cell Physiol. 2016 Jan 15;310(2):C127-35. doi: 10.1152/ajpcell.00269.2015. Epub 2015 Oct 28.

5.

Loss of ATE1-mediated arginylation leads to impaired platelet myosin phosphorylation, clot retraction, and in vivo thrombosis formation.

Lian L, Suzuki A, Hayes V, Saha S, Han X, Xu T, Yates JR 3rd, Poncz M, Kashina A, Abrams CS.

Haematologica. 2014 Mar;99(3):554-60. doi: 10.3324/haematol.2013.093047. Epub 2013 Nov 29.

6.

Contractility of myofibrils from the heart and diaphragm muscles measured with atomic force cantilevers: effects of heart-specific deletion of arginyl-tRNA-protein transferase.

Ribeiro PA, Ribeiro JP, Minozzo FC, Pavlov I, Leu NA, Kurosaka S, Kashina A, Rassier DE.

Int J Cardiol. 2013 Oct 9;168(4):3564-71. doi: 10.1016/j.ijcard.2013.05.069. Epub 2013 Jun 2.

PMID:
23739549
7.

Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice.

Sussman MA, Welch S, Cambon N, Klevitsky R, Hewett TE, Price R, Witt SA, Kimball TR.

J Clin Invest. 1998 Jan 1;101(1):51-61.

8.

Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes.

Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, Seo JW, Lee YS, Dorn GW 2nd, Oh U, Kim BY, Kwon YT.

J Biol Chem. 2012 Jul 6;287(28):24043-52. doi: 10.1074/jbc.M112.364117. Epub 2012 May 10.

9.

The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model.

Melkani GC, Bodmer R, Ocorr K, Bernstein SI.

PLoS One. 2011;6(7):e22579. doi: 10.1371/journal.pone.0022579. Epub 2011 Jul 25.

10.

Arginylation-dependent neural crest cell migration is essential for mouse development.

Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A.

PLoS Genet. 2010 Mar 12;6(3):e1000878. doi: 10.1371/journal.pgen.1000878.

11.
12.

Development of dilated cardiomyopathy in Bmal1-deficient mice.

Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA.

Am J Physiol Heart Circ Physiol. 2012 Aug 15;303(4):H475-85. doi: 10.1152/ajpheart.00238.2012. Epub 2012 Jun 15.

13.

Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development.

McKeown CR, Nowak RB, Moyer J, Sussman MA, Fowler VM.

Circ Res. 2008 Nov 21;103(11):1241-8. doi: 10.1161/CIRCRESAHA.108.178749. Epub 2008 Oct 16.

14.

Knockout of Lmod2 results in shorter thin filaments followed by dilated cardiomyopathy and juvenile lethality.

Pappas CT, Mayfield RM, Henderson C, Jamilpour N, Cover C, Hernandez Z, Hutchinson KR, Chu M, Nam KH, Valdez JM, Wong PK, Granzier HL, Gregorio CC.

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13573-8. doi: 10.1073/pnas.1508273112. Epub 2015 Oct 20.

15.

Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle.

Kashina A.

Anat Rec (Hoboken). 2014 Sep;297(9):1630-6. doi: 10.1002/ar.22969. Review.

16.

Actin binding GFP allows 4D in vivo imaging of myofilament dynamics in the zebrafish heart and the identification of Erbb2 signaling as a remodeling factor of myofibril architecture.

Reischauer S, Arnaout R, Ramadass R, Stainier DY.

Circ Res. 2014 Oct 24;115(10):845-56. doi: 10.1161/CIRCRESAHA.115.304356. Epub 2014 Sep 16.

17.

Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo.

Wang J, Han X, Wong CC, Cheng H, Aslanian A, Xu T, Leavis P, Roder H, Hedstrom L, Yates JR 3rd, Kashina A.

Chem Biol. 2014 Mar 20;21(3):331-7. doi: 10.1016/j.chembiol.2013.12.017. Epub 2014 Feb 13.

18.

Cardiac cytoarchitecture - why the "hardware" is important for heart function!

Ehler E.

Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1857-63. doi: 10.1016/j.bbamcr.2015.11.006. Epub 2015 Nov 11. Review.

19.

MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure.

Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P.

Cell. 1997 Feb 7;88(3):393-403.

20.

Global cellular regulation including cardiac function by post-translational protein arginylation.

Kaji H, Kaji A.

J Mol Cell Cardiol. 2012 Sep;53(3):314-6. doi: 10.1016/j.yjmcc.2012.06.009. Epub 2012 Jun 23. No abstract available.

PMID:
22749823

Supplemental Content

Support Center