Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model.

Zanni E, De Bellis G, Bracciale MP, Broggi A, Santarelli ML, Sarto MS, Palleschi C, Uccelletti D.

Nano Lett. 2012 Jun 13;12(6):2740-4. doi: 10.1021/nl204388p. Epub 2012 May 25.

PMID:
22612766
2.

Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.

Wu Q, Zhao Y, Li Y, Wang D.

Nanoscale. 2014 Oct 7;6(19):11204-12. doi: 10.1039/c4nr02688h.

PMID:
25124895
3.

microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans.

Wu Q, Zhao Y, Zhao G, Wang D.

Nanomedicine. 2014 Oct;10(7):1401-10. doi: 10.1016/j.nano.2014.04.005. Epub 2014 Apr 26.

PMID:
24780312
4.

Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans.

Khare P, Sonane M, Pandey R, Ali S, Gupta KC, Satish A.

J Biomed Nanotechnol. 2011 Feb;7(1):116-7.

PMID:
21485831
5.

Toxic response of graphene nanoplatelets in vivo and in vitro.

Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, Kim JH, Kim DW.

Arch Toxicol. 2015 Sep;89(9):1557-68. doi: 10.1007/s00204-014-1303-x. Epub 2014 Jul 1.

PMID:
24980260
6.

Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism.

Zhang W, Wang C, Li Z, Lu Z, Li Y, Yin JJ, Zhou YT, Gao X, Fang Y, Nie G, Zhao Y.

Adv Mater. 2012 Oct 9;24(39):5391-7. doi: 10.1002/adma.201202678. Epub 2012 Aug 24.

PMID:
22927326
7.

An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.

Zhao Y, Wu Q, Wang D.

Biomaterials. 2016 Feb;79:15-24. doi: 10.1016/j.biomaterials.2015.11.052. Epub 2015 Dec 2.

PMID:
26686978
8.

Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans.

Cha YJ, Lee J, Choi SS.

Chemosphere. 2012 Mar;87(1):49-54. doi: 10.1016/j.chemosphere.2011.11.054. Epub 2011 Dec 17.

PMID:
22182706
9.

Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection.

Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, Sulaiman SF, Ooi KL, Khan NA, Muhammad TS, Tan MW, Shu-Chien AC.

J Ethnopharmacol. 2012 Jan 31;139(2):657-63. doi: 10.1016/j.jep.2011.12.016. Epub 2011 Dec 13.

PMID:
22193176
10.

Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans.

Wu Q, Yin L, Li X, Tang M, Zhang T, Wang D.

Nanoscale. 2013 Oct 21;5(20):9934-43. doi: 10.1039/c3nr02084c.

PMID:
23986404
11.

Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans.

Däwlätşina GI, Minullina RT, Fakhrullin RF.

Nanoscale. 2013 Dec 7;5(23):11761-9. doi: 10.1039/c3nr03905f. Epub 2013 Oct 11.

PMID:
24121899
12.

Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans.

Zhang W, Sun B, Zhang L, Zhao B, Nie G, Zhao Y.

Nanoscale. 2011 Jun;3(6):2636-41. doi: 10.1039/c1nr10239g. Epub 2011 May 3.

PMID:
21541378
13.

The use of FUdR can cause prolonged longevity in mutant nematodes.

Aitlhadj L, Stürzenbaum SR.

Mech Ageing Dev. 2010 May;131(5):364-5. doi: 10.1016/j.mad.2010.03.002. Epub 2010 Mar 15.

PMID:
20236608
14.

Assessing in vivo toxicity of graphene materials: current methods and future outlook.

Ma Y, Shen H, Tu X, Zhang Z.

Nanomedicine (Lond). 2014 Jul;9(10):1565-80. doi: 10.2217/nnm.14.68.

PMID:
25253502
15.

Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans.

Zhao Y, Jia R, Qiao Y, Wang D.

Nanomedicine. 2016 Apr;12(3):735-44. doi: 10.1016/j.nano.2015.10.008. Epub 2015 Nov 6.

PMID:
26552872
16.

In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.

Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC.

Nano Lett. 2010 Sep 8;10(9):3692-9. doi: 10.1021/nl1021909.

PMID:
20677785
17.

Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism.

Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li YF, Iida A, Tang Z, Zhao Y, Chai Z, Chen C.

Nano Lett. 2011 Aug 10;11(8):3174-83. doi: 10.1021/nl201391e. Epub 2011 Jul 1.

PMID:
21721562
18.

The pathogen Pseudomonas aeruginosa negatively affects the attraction response of the nematode Caenorhabditis elegans to bacteria.

Laws TR, Atkins HS, Atkins TP, Titball RW.

Microb Pathog. 2006 Jun;40(6):293-7. Epub 2006 May 6.

PMID:
16678995
19.

Low survivorship of dauer larva in the nematode Caenorhabditis japonica, a potential comparative system for a model organism, C. elegans.

Tanaka R, Okumura E, Kanzaki N, Yoshiga T.

Exp Gerontol. 2012 May;47(5):388-93. doi: 10.1016/j.exger.2012.03.001. Epub 2012 Mar 9.

PMID:
22426108
20.

Preparation of graphite nanoplatelets and graphene sheets.

Geng Y, Wang SJ, Kim JK.

J Colloid Interface Sci. 2009 Aug 15;336(2):592-8. doi: 10.1016/j.jcis.2009.04.005. Epub 2009 Apr 10.

PMID:
19414181

Supplemental Content

Support Center