Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Labeling of anti-MUC-1 binding single chain Fv fragments to surface modified upconversion nanoparticles for an initial in vivo molecular imaging proof of principle approach.

Hischemöller A, Walter C, Weiler V, Hummel H, Thepen T, Huhn M, Barth S, Hoheisel W, Köhler K, Dimova-Landen D, Bremer C, Haase M, Waldeck J.

Int J Mol Sci. 2012;13(4):4153-67. doi: 10.3390/ijms13044153. Epub 2012 Mar 29.

2.

In-vitro and in-vivo imaging of prostate tumor using NaYF4: Yb, Er up-converting nanoparticles.

Yu Y, Huang T, Wu Y, Ma X, Yu G, Qi J.

Pathol Oncol Res. 2014 Apr;20(2):335-41. doi: 10.1007/s12253-013-9700-7. Epub 2013 Nov 14.

PMID:
24234861
3.

Development of a hyperimmune anti-MUC-1 single chain antibody fragments phage display library for targeting breast cancer.

Winthrop MD, DeNardo SJ, DeNardo GL.

Clin Cancer Res. 1999 Oct;5(10 Suppl):3088s-3094s.

PMID:
10541348
4.

Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles.

Qiao R, Liu C, Liu M, Hu H, Liu C, Hou Y, Wu K, Lin Y, Liang J, Gao M.

ACS Nano. 2015 Feb 24;9(2):2120-9. doi: 10.1021/nn507433p. Epub 2015 Jan 26.

PMID:
25602117
5.

MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.

Cai L, Chen ZZ, Chen MY, Tang HW, Pang DW.

Biomaterials. 2013 Jan;34(2):371-81. doi: 10.1016/j.biomaterials.2012.09.084. Epub 2012 Oct 22.

PMID:
23084552
6.

Enhanced dual contrast agent, Co(2+)-doped NaYF4:Yb(3+),Tm(3+) nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging.

Xia A, Zhang X, Zhang J, Deng Y, Chen Q, Wu S, Huang X, Shen J.

Biomaterials. 2014 Nov;35(33):9167-76. doi: 10.1016/j.biomaterials.2014.07.031. Epub 2014 Aug 6.

PMID:
25108318
7.

Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer.

Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, Muyldermans S, Lahoutte T, Caveliers V.

FASEB J. 2011 Jul;25(7):2433-46. doi: 10.1096/fj.10-180331. Epub 2011 Apr 8.

PMID:
21478264
8.

Selection and characterization of anti-MUC-1 scFvs intended for targeted therapy.

Winthrop MD, DeNardo SJ, Albrecht H, Mirick GR, Kroger LA, Lamborn KR, Venclovas C, Colvin ME, Burke PA, DeNardo GL.

Clin Cancer Res. 2003 Sep 1;9(10 Pt 2):3845S-53S.

9.

Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging.

Kim HY, Wang X, Wahlberg B, Edwards WB.

Bioconjug Chem. 2014 Jul 16;25(7):1311-22. doi: 10.1021/bc500173f. Epub 2014 Jun 18.

10.

Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes.

Grebenik EA, Nadort A, Generalova AN, Nechaev AV, Sreenivasan VK, Khaydukov EV, Semchishen VA, Popov AP, Sokolov VI, Akhmanov AS, Zubov VP, Klinov DV, Panchenko VY, Deyev SM, Zvyagin AV.

J Biomed Opt. 2013 Jul;18(7):76004. doi: 10.1117/1.JBO.18.7.076004.

PMID:
23843082
11.

NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA.

Jiang S, Zhang Y, Lim KM, Sim EK, Ye L.

Nanotechnology. 2009 Apr 15;20(15):155101. doi: 10.1088/0957-4484/20/15/155101. Epub 2009 Mar 24.

PMID:
19420539
12.

Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L, Lei H, Yang W, Gao M.

ACS Nano. 2013 Aug 27;7(8):7227-40. doi: 10.1021/nn4030898. Epub 2013 Jul 26.

PMID:
23879437
13.

Fluorescent magnetic nanoparticles with specific targeting functions for combinded targeting, optical imaging and magnetic resonance imaging.

Chen YC, Chang WH, Wang SJ, Hsieh WY.

J Biomater Sci Polym Ed. 2012;23(15):1903-22. doi: 10.1163/092050611X598329. Epub 2012 May 8.

PMID:
22024467
14.

Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

Yi Z, Zeng T, Xu Y, Lu W, Qian C, Liu H, Zeng S, Hao J.

Nanotechnology. 2015 Sep 25;26(38):385702. doi: 10.1088/0957-4484/26/38/385702. Epub 2015 Sep 3.

PMID:
26335515
15.

Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, Feng W, Zhang Y, Li F.

Biomaterials. 2013 Jan;34(3):774-83. doi: 10.1016/j.biomaterials.2012.10.022. Epub 2012 Oct 29.

PMID:
23117216
16.

Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.

Hu Y, Wu B, Jin Q, Wang X, Li Y, Sun Y, Huo J, Zhao X.

Talanta. 2016 May 15;152:504-12. doi: 10.1016/j.talanta.2016.02.039. Epub 2016 Feb 18.

PMID:
26992548
17.

Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy.

Lim YT, Cho MY, Noh YW, Chung JW, Chung BH.

Nanotechnology. 2009 Nov 25;20(47):475102. doi: 10.1088/0957-4484/20/47/475102. Epub 2009 Oct 29.

PMID:
19875875
18.

An engineered anti-CA19-9 cys-diabody for positron emission tomography imaging of pancreatic cancer and targeting of polymerized liposomal nanoparticles.

Girgis MD, Federman N, Rochefort MM, McCabe KE, Wu AM, Nagy JO, Denny C, Tomlinson JS.

J Surg Res. 2013 Nov;185(1):45-55. doi: 10.1016/j.jss.2013.05.095. Epub 2013 Jun 19.

19.

RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis.

Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, Kang JH, Lim SM, Park S, Song R.

J Nucl Med. 2013 Jan;54(1):96-103. doi: 10.2967/jnumed.112.108043. Epub 2012 Dec 11.

20.

Phagocytosis of breast cancer cells mediated by anti-MUC-1 monoclonal antibody, DF3, and its bispecific antibody.

Akewanlop C, Watanabe M, Singh B, Walker M, Kufe DW, Hayes DF.

Cancer Res. 2001 May 15;61(10):4061-5.

Supplemental Content

Support Center